{ "cells": [ { "cell_type": "markdown", "id": "2c1d1424", "metadata": {}, "source": [ "# Consistency, Stability, Convergence" ] }, { "cell_type": "markdown", "id": "93a965ba", "metadata": {}, "source": [ "**강좌**: *기초 전산유체역학*" ] }, { "cell_type": "markdown", "id": "3a6ed70f", "metadata": {}, "source": [ "## Accuracy\n", "\n", "Central Difference와 Upwind difference로 Wave equation을 해석한 기법의 정확도를 비교해보자.\n", "Taylor expansion을 이용하면 다음 관계를 얻을 수 있다.\n", "\n", "$$\n", "u_j^{n+1} = u_j^n + u_t \\Delta t+ \\frac{1}{2!} u_{tt} \\Delta t^2 + \\frac{1}{3!} u_{ttt} \\Delta t^3 +...\n", "$$\n", "\n", "$$\n", "u_{j+1}^n = u_j^n + u_x \\Delta x + \\frac{1}{2!} u_{xx} \\Delta x^2 + \\frac{1}{3!} u_{xxx} \\Delta x^3 +...\n", "$$\n", "\n", "$$\n", "u_{j-1}^n = u_j^n - u_x \\Delta x + \\frac{1}{2!} u_{xx} \\Delta x^2 - \\frac{1}{3!} u_{xxx} \\Delta x^3 +...\n", "$$\n", "\n", "### Central scheme\n", "First approach (Euler Explicit + Central difference) 에 이 결과를 적용하면 다음과 같다.\n", "\n", "$$\n", "u_t + a u_x = - \\frac{\\Delta t}{2} u_{tt} - \\frac{a \\Delta x^2}{6} u_{xxx} + O(\\Delta t^2, \\Delta x^3) = O(\\Delta t, \\Delta x^2) .\n", "$$\n", "\n", "즉 시간에 대해서는 1차 정확도, 공간에 대해서는 2차 정확도를 갖는다.\n", "\n", "### Upwind scheme\n", "Second approach (Euler Explicit + Upwind) 에 이 결과를 적용하면 다음과 같다.\n", "\n", "$$\n", "u_t + a u_x = - \\frac{\\Delta t}{2} u_{tt} + \\frac{a \\Delta x}{2} u_{xx} + O(\\Delta t^2, \\Delta x^2) = O(\\Delta t, \\Delta x) .\n", "$$\n", "\n", "즉 시간과 공간에 대해 1차 정확도를 갖는다.\n", "\n", "### Consistency\n", "$\\Delta x, \\Delta t \\rightarrow 0$ 일 때 차분식이 미분방정식과 같아지는 경우 이 기법이 Consistent 하다. Central scheme 과 Upwind scheme 모두 Consistent 하다.\n", "\n", "### Modified Equation\n", "Upwind 또는 Central scheme의 경우 시간에 대한 미분 항 $u_{tt}$ 을 다음과 같이 변형할 수 있다.\n", "\n", "$$\n", "u_t = - au_x + O(\\Delta t, \\Delta x)\\\\\n", "u_{tt} = -au_{xt} + O(\\Delta t, \\Delta x)\n", "$$\n", "\n", "여기서 $u_{xt}=u_{tx}$ 이므로 \n", "\n", "$$\n", "u_{tt} = -a u_{xt} = -a u_{tx} = -a \\frac{\\partial}{\\partial x} \\left (\n", "-a u_x + O(\\Delta t, \\Delta x) \n", "\\right ) = a^2 u_{xx} + O(\\Delta t, \\Delta x)\n", "$$\n", "\n", "Upwind scheme에 이를 적용하면\n", "\n", "$$\n", "u_t + a u_x = \\frac{a \\Delta x}{2} u_{xx} \\left ( -a \\frac{\\Delta t}{\\Delta x} + 1 \\right) + O(\\Delta t^2, \\Delta x^2, \\Delta t \\Delta x) \n", "= \\frac{a \\Delta x}{2} u_{xx} (1 - \\nu) + O(\\Delta t^2, \\Delta x^2, \\Delta t \\Delta x)\n", "$$\n", "\n", "$\\Delta x, \\Delta t \\rightarrow 0$ 이므로, 가장 크기가 큰 첫번째 오차항까지 생각하면, Upwind 기법은 다음과 같이 근사할 수 있다.\n", "\n", "$$\n", "u_t + a u_x = \\epsilon u_{xx}\n", "$$\n", "\n", "$\\epsilon > 0$ 일 때 $\\epsilon u_{xx}$ 은 작은 점성항과 같은 역활을 해서 시간이 지날수록 수치적인 해가 감쇄한다.\n", "\n", "- (DIY) Central 기법에 대해 modified equation을 구해보시오." ] }, { "cell_type": "markdown", "id": "37170fdd", "metadata": {}, "source": [ "### Stability\n", "\n", "Central scheme의 경우 정확도가 높음에도 시간이 지날 수록 해의 진폭이 점점 커져서 발산한다.\n", "\n", "이는 수치 해석 기법의 안정성과 관계가 있다.\n", "\n", "### von Neumann Stability Analysis\n", "\n", "선형 방정식이고, Periodic 경계 조건에 대해서 차분식의 수치 안정성은 von Neumann 안정성 분석으로 판단할 수 있다.\n", "\n", "완전해를 $D$ 라 했을 때 수치해 $N$은 다음과 같이 나타낼 수 있다.\n", "\n", "$$\n", "N = D + \\epsilon.\n", "$$\n", "\n", "여기서 $\\epsilon$ 은 round-off 에 의한 error 이다.\n", "\n", "차분식에 이를 적용하면 오차에 대한 식을 구할 수 있다. \n", "\n", "#### Central scheme\n", "차분식에 완전해를 적용하면\n", "\n", "$$\n", "\\frac{D_j^{n+1} + \\epsilon_j^{n+1} - D_{j}^n - \\epsilon_j^{n}}{\\Delta t} + \\frac{a (D_{j+1}^n + \\epsilon_{j+1}^{n} - D_{j-1}^n - \\epsilon_{j-1}^{n})}{2 \\Delta x} = 0.\n", "$$\n", "\n", "완전해는 차분식에 대한 오차가 없으므로,\n", "\n", "$$\n", "\\frac{\\epsilon_j^{n+1} - \\epsilon_j^{n}}{\\Delta t} + \\frac{a (\\epsilon_{j+1}^{n} - \\epsilon_{j-1}^{n})}{2 \\Delta x} = 0.\n", "$$\n", "\n", "이 때 오차를 아래와 같이 표현하자.\n", "\n", "$$\n", "\\epsilon_j^n = \\sigma^n e^{ikx_j}\n", "$$\n", "\n", "즉 오차는 공간에 대해 $2 \\pi / k$의 주기를 갖는 형태이다. 이를 오차에 대한 차분식에 적용하면\n", "\n", "$$\n", "\\frac{\\sigma^{n+1} e^{ikx_j} - \\sigma^n e^{ikx_j}}{\\Delta t} + \\frac{a (\\sigma^n e^{ik(x_j + \\Delta x)} - \\sigma^n e^{ik(x_j - \\Delta x)})}{2 \\Delta x} = 0.\n", "$$\n", "\n", "$\\sigma^n e^{ikx_j}$ 를 각 변에 나누어서 정리하면\n", "\n", "$$\n", "\\sigma = 1 - \\frac{a \\Delta t}{\\Delta x} (i \\sin (k \\Delta x))\n", "$$\n", "\n", "Central scheme은 $|\\sigma| > 1$ 이므로 오차가 증폭된다. 즉 불안정하다.\n", "\n", "#### Upwind scheme\n", "Upwind 차분식에 완전해를 적용하면\n", "\n", "$$\n", "\\frac{D_j^{n+1} + \\epsilon_j^{n+1} - D_{j}^n - \\epsilon_j^{n}}{\\Delta t} + \\frac{a (D_{j}^n + \\epsilon_{j}^{n} - D_{j-1}^n - \\epsilon_{j-1}^{n})}{\\Delta x} = 0.\n", "$$\n", "\n", "오차에 대한 식은 다음과 같다.\n", "\n", "$$\n", "\\frac{\\epsilon_j^{n+1} - \\epsilon_j^{n}}{\\Delta t} + \\frac{a (\\epsilon_{j}^{n} - \\epsilon_{j-1}^{n})}{\\Delta x} = 0.\n", "$$\n", "\n", "오차를 주기 형태로 표현해서 위 차분식에 적용하면\n", "\n", "$$\n", "\\frac{\\sigma^{n+1} e^{ikx_j} - \\sigma^n e^{ikx_j}}{\\Delta t} + \\frac{a (\\sigma^n e^{ik(x_j)} - \\sigma^n e^{ik(x_j - \\Delta x)})}{\\Delta x} = 0.\n", "$$\n", "\n", "$\\sigma^n e^{ikx_j}$ 를 각 변에 나누어서 정리하면\n", "\n", "$$\n", "\\sigma = 1 - \\frac{a \\Delta t}{\\Delta x} (1 - e^{-ik\\Delta x}) = (1 - \\nu + \\nu \\cos (k \\Delta x)) - i \\nu \\sin (k \\Delta x)\n", "$$\n", "\n", "이때 $\\nu = a \\Delta t / \\Delta x$ 를 CFL 수라고 한다.\n", "\n", "수치 기법이 안정적이려면 $|\\sigma| \\le 1$ 이어야 한다. \n", "$\\nu$ 값을 다르게 하면서 $|\\sigma|$ 를 그려보면 아래와 같다. \n", "이를 만족하려면 $\\nu \\le 1$ 이다." ] }, { "cell_type": "code", "execution_count": 2, "id": "b4874acf", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "\n", "import numpy as np\n", "\n", "plt.style.use('ggplot')\n", "plt.rcParams['figure.dpi'] = 150" ] }, { "cell_type": "code", "execution_count": 3, "id": "1adf22c6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, '$|\\\\sigma|$ for upwind scheme')" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAK7CAYAAADP8SbkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9d3xb9b3//zpHe3rJI3YSJ3H2TsgeZJBAQhIChD1aoC2UcSmrLff210LLhQJtgXA7aL9llTKaQggNIQkBMsh2hrP3dOx4S9ae5/P7Q5xjyZZtyZYsyX4/Hw89rLM/R5bOeZ335BhjDARBEARBEASRAvDJHgBBEARBEARBiJA4JQiCIAiCIFIGEqcEQRAEQRBEykDilCAIgiAIgkgZSJwSBEEQBEEQKQOJU4IgCIIgCCJlIHFKEARBEARBpAwkTgmCIAiCIIiUgcQpQRAEQRAEkTKQOCUIgiAIgiBSBhKnBEEQBEEQRMpA4pQgCIIgCIJIGUicEgRBEARBECkDiVOCIAiCIAgiZSBxShAEQRAEQaQMJE4JgiAIgiCIlIHEKdFt2bRpEziOA8dx2LRpU1oe0+Vy4cUXX8TkyZORmZkJnuel/Vsslk7vn0gs58+fl/5f99xzT7KHI/Hss892+W8jEYT+3p599tlkD4cgiDghT/YACIKIjNPpxJVXXom9e/cmeygEQRAE0WWQOCWIFOWNN96QhOnIkSNx//33o7CwEDKZDACg0+mSOTyCIAiCSAgkTgkiRfniiy8AABzHYf369SgsLEzyiIhY6devHxhjyR4GQRBEWkExpwSRopSXlwMA8vPzSZgSBEEQPQYSpwSRong8HgCASqVK8kgIgiAIousgcUoQIZw/fx6/+MUvMGPGDOTn50OpVErZwK29br755rgd/5133pH2e+HCBQDAhQsXWhzznXfeibj94cOH8cgjj2D48OHIyMiARqNB//79ceedd2Lt2rVtHjtS5vORI0fw8MMPY8iQITAYDOA4DqtWrYrpnGLJDG9v3UhjPHToEO6//36UlJRAo9EgNzcX8+bNw4cfftjqcX74wx+C4zjwPI/a2tqI6/zud7+TjmUwGOD3+yOu95Of/ERa78yZM2HL2svWj3Q+Fy9exJNPPokhQ4ZAq9UiMzMT06dPxxtvvIFAINDqOYWycuVKLFiwAHl5edBoNBgwYAB++MMf4tChQ1FtHy2BQADvvfcelixZgj59+kCtVkOr1aJfv36YOHEiHnzwQXz66adwOp1t7sfpdOLPf/4zFi9ejD59+kCj0UjjvvHGG/G3v/0NVqs1qjHF4/NzOBxYvnw5rr76ahQWFkKlUiE7OxsTJ07Er371q1a/M0Dk/+mJEyfw8MMPY9CgQdBqtSgsLMSSJUuwffv2FtuvWbNG+hzUajX69euHRx55BNXV1QkfO0GkDIwguikbN25kABgAtnHjxjbXDQQC7Fe/+hWTyWTSNtG+nnvuuQ4dMxJvv/12VMd8++23w7YTBIH9z//8D+N5vs3tFi9ezGw2W7uf1zPPPMPeeustplKpWuzj008/jemcnnnmmag/k/bWbT7Gf/zjHxHHKL4WLVrEXC5Xi/2899570jorVqyIOJZrr702bF/bt2+PuN7o0aMZANanT58Wy86dOydt//3vf7/d81mzZg3LzMxs9XwWLFjAPB5Pq5+f1+tlt9xyS6vbq1Qq9o9//COm/0lr1NbWsokTJ0b1fW3rO7N27VqWn5/f7j7uueeehH9+jDG2bt26dsdjMBjYZ599FnH75mP697//zbRabcT9cBwn/Za9Xi+77777Wj1mr1692OnTpxM6doJIFSghiiAAPPLII/jLX/4CIJiAtHTpUlxzzTXIzs7G+fPn8dZbb+HEiRPS+gUFBZK7fdKkSXEbx9y5c/Hpp58CAO6//37U1tYiNzcXf/vb38LWGz9+fNj0z3/+c/zud78DAMjlctxxxx2YPXs2VCoV9u/fjzfffBNmsxmff/45rr32WmzcuFHK+o/Etm3b8Pzzz0Mul+P+++/H1KlToVKpcPjwYeTk5MTtfDtDaWkpXnjhBQDAfffdhyuvvBIymQylpaV488034XA4sGbNGtx11134+OOPw7adM2eO9H7jxo0trN+BQABbt24Nm7dx40ZMnTo1bF59fb1kjQzdZ0fYv38/fve734ExhgceeED6zEtLS/HGG2/A6XRi3bp1+O1vf4tnnnkm4j4efPBBrFixAgCgVqtx7733YurUqWCM4dtvv8W7776LH/zgB5g/f36nxgoAP/rRj1BaWgoAKC4uxm233YaBAwciMzMTNpsNJ06cwJYtW7Br165W97FixQrccccdkkVz9OjRWLZsGUpKSsDzPMrLy7F9+3asX7++3cSyeHx+q1atws033wy/3w+ZTIbFixfjqquuQkFBAWw2GzZu3Ih//etfsNlsuOGGG/Dll1/iqquuanVMe/fuxYsvvgiVSoXHHnsMEyZMgCAIWLduHT788EMwxvCjH/0IM2bMwOuvv4633noLo0ePxl133YXi4mJUVVXh//2//4fDhw/j8uXLuPfee7Fly5YuGTtBJJWkSmOCSCDRWjHffPNNaT2TycS2bt3aYh2n08kmTZokrffyyy936pjRUFxczACw4uLiNtfbunUr4zhOsops27atxTqVlZVs6NCh0thefPHFNscOgBUWFrLjx4936hwYS5zlVDzfHTt2tFjv5MmTrLCwUFrvk08+abHOwIEDGQA2dOjQFst27dolbTt16lQGgM2bN6/Fep988om03ltvvdVieSyWUwCsb9++7OTJky3W27FjB5PL5QwAy87OZm63u819ZWVlsbKyshbr7Ny5kxkMhrBjduR7Wl1dLVnpr7jiCma321td9/z58+z8+fMt5p89e5bpdDoGgPE8z1577TUmCELEfTQ0NET1fejM51deXs4yMjIYAJafn892794dcSy7d++W1uvdu3cLS2zzMQ0cOJBdvHixxX6ef/55aZ0JEyYwjuPYQw89xAKBQNh6DoeDjRo1Slo30rjiNXaCSBVInBLdlmiEYkNDA8vJyWEAmFKpZDt37mx1f2vXrpX2d+WVV3b4mNESrThdunSpdMy//vWvra536NAh6QZdUFDQ7k31888/79T4RRIpTt94441W9xX6/5o6dWqL5T/60Y+k5ZWVlWHLXnzxRUmgv/POOwwA02g0LT6zRx55RNrHuXPnWhwjVnG6ZcuWVs/njjvukNb79ttvWyxfsmSJtPy9995rdT9/+ctfOi1Od+zYIW3/hz/8IebtGQv//P/7v/+7Q/uI5+f36KOPRrUfxsIfaP/5z3+2OaZdu3ZF3Ifb7Q57UBg9ejTz+/0R133//fel9X7zm98kbOwEkSpQQhTRo3n77bdRX18PIJjYMnny5FbXnTVrFng++JMJdfEnE4/HIyU6mUwm3Hvvva2uO3LkSCxcuBAAUFVVhR07drS6bv/+/bFo0aL4DjbOZGVltXm+CxYswPDhwwEAO3bsQFVVVdjy2bNnS++bJ1+J03PmzJHc9S6Xq4WLWlyvX79+6NevX+wnEcL48eMxc+bMVpeHumCPHDkStsztdmPdunUAgqXHbr/99lb3c9999yErK6tTY9VqtdL7o0ePxrx9IBDAv/71LwCAwWDAf//3f3dqPEDnPj/GGP75z38CCIbptLUfALj11lshlwej4r788stW15swYUKrYT8qlQoTJkyQpu+///5WQ21mzJghvW/+eSdq7ASRTCjmlOjRvP322wCCcZqPP/54m+tqNBrodDrYbDapzFOyKSsrg9frBRAUWwqFos3158+fj9WrVwMAdu3ahVmzZkVcb/r06fEdaAKYOXMmlEplm+vMnTtXupmXlpZiyZIl0rLmcaeioPP7/VK86Zw5c9C3b18MGDAAZ8+excaNG6Wbf11dnSRyQoVuR2nrwQgAioqKpPdmszls2YEDB+Dz+QAEH6LaiidWKpWYPn06Pv/88w6PdcSIESgsLERlZSXefPNNAMEY1IkTJ0oPcG1x8OBBKft+zpw5MBgMHR6LSGc+vyNHjqChoQEAkJ2dHVVFCr1eD4vFguPHj7e6Tnvx6Pn5+VGtG7peV42dIJIJiVOix1JdXY3Dhw8DCIqxXr16tbl+IBCAy+UCgJRJCrp8+bL0ftCgQe2uP3jwYOl9c0tiKOlQ9H/gwIExrVNZWRm2rFevXhg8eDBOnjyJb775Rpq/Z88e2O12AE0Cds6cOTh79iy++eYb/OpXvwIQtJqy75J0OpsMBQQt320RWu/W7XaHLQs9t1g/l44gk8nw17/+FcuWLYPX68Wbb76JN998E5mZmZg6dSpmzJiBa665BldccUXE7S9duiS9HzZsWKfGItKZz+/8+fPS+3Xr1klW6GgQhWEk2rtOhI6prXWTMXaCSCbk1id6LKE1BqOxFJ45c0aqdTlkyJCEjSsWRBEFADqdrt31Q9ex2WytrqfRaDo3sC4g1LXcGqHnG/pZiYii8syZM1JHro0bNwKAZDENXW/nzp2SOBDXC13eGaKxOLaGw+GQ3sf6uXSUxYsXY/fu3bj++usli73FYsHatWvxi1/8AhMmTMCoUaMiiqXQmqV6vb7TYwE69/k1NjZ2eFvRYh2JWMbU0fEnauwEkUxInBI9ltOnT0vvo7E6bt68WXofDzESD0Jv7O0VOgfCRUw8XKnxRhCEqNeN9XwjiaBQd7woNkPjTUXE9x6PR3qoEdcrKSlBnz59oh53IggVm7F+Lp1hzJgx+PTTT1FfX4+1a9fil7/8JWbNmiWJ1cOHD+Paa6/F+++/H7ad0WiU3kd6aOhqQr8bzz77LFgwWTiqV6jlMhmk89gJojVInBI9ltBOKdFYkj766CPp/eLFixMyplgJDUU4depUu+uHrtNeGEO8CHVJivGxrVFXVxf1fkMfLqJZJ1KoQnNx6vP5sG3bNgDh4rSwsFB6gNm4cSNqamqkWNZ4xJt2ltBzi/VziQcGgwELFizAb37zG2zatAmXL1+WYrgZY3jiiSfCujP17t1bet+RhKp4ExqPKob6pAvpPHaCaA0Sp0SPJTR5qL2Wfrt27ZLiEufMmYOhQ4cmdGzRMnbsWCkpaNOmTa222BT56quvpPfxbB7QFqGZ4RUVFW2u21bB9uZs3bq1XbEb6nqfOHFii+UFBQXS/3Ljxo0oLS2VrIrNrePi9MaNG8Oy+1PBij5mzBjp+7xly5Y223R6vV5JgCeKnJwcvPLKK1I2ek1NTdiD0ejRoyXr6aZNm9oMMekKxo4dK41nw4YNKWHNjZZ0HjtBtAaJU6LHUlJSIr1vq6SKw+HAD3/4QwDB7lHPPfdcwscWLSqVCtdeey2AoMD+xz/+0eq6R48exZo1awAERVnzbkeJQiznBISLxeZs374d+/bti3q/DQ0NePfdd1td/uWXX0rZ9FOnTkVBQUHE9URxeeHCBbz11lsAgt+Nvn37Rlxv9+7dYZnuqWA5VavVWLBgAYBgoptYpikS77zzTouM70QRWl4r9MFJJpNJ1RFsNht++9vfdsl4WkMul0vjaWxsxPPPP5/U8cRCOo+dIFqDxCnRY5k7d65Ucmf16tUREzdqamqwYMECyV32X//1XylXZumpp54Cx3EAgMcffzyi9bGqqkpqbSiu114ZpngxefJkyXr60UcfYe/evS3WOXPmDO68886Y9/3UU09JLTSb7+++++6Tpp988slW9xEqLkWxG8kaKs7z+Xz48MMPAQRjlUPdqskktBTao48+KrVVDaW0tBQ//elPO32s9evXY/ny5W0m45w+fRobNmwAEIyLDH0YBIItd8V4yZdeegnLly9vtUWpxWIJi/lOBL/4xS8kC+RLL72El156qc0Y6JqaGjz33HM4ePBgQscVDek8doKIBJWSInos/fr1w91334133nkHgiBgyZIluO+++zBz5kwwxrBnzx68++670g34hhtuwCuvvJLkUbdk+vTpePLJJ/H73/8eVqsVM2bMwF133YXZs2dDqVSirKwMf//736WyMTNmzGhTrMUblUqFRx99FL/+9a/h8/kwe/Zs/PjHP8aECRPg8XiwY8cO/OMf/wBjDNdddx3+85//RLXfa6+9Fhs2bMD06dPx/e9/HzNnzoRMJkNpaSnefPNNyb154403YtmyZa3uJ1SciuI9kjjNz8/HsGHDcOzYsTbXSxZz5szBD37wA7z55puor6/HpEmTcN9992Hq1KlgjGHr1q145513wBjDtddeiy+++KLDx7p8+TIee+wx/OxnP8OcOXMwefJkDBgwAFqtFnV1dSgtLcWKFSukEInHHnusRQWI/v37480338Ttt98OQRDw2GOP4a233sJNN92EgQMHguM4VFRUYMeOHVi7di1uvvnmVuvyxoM+ffrgww8/xPXXXw+fz4enn34af//737Fs2TIMHz4cWq0WVqsVp06dwo4dO7B161YEAoGU+A6k89gJIiJd0IWKIJJCNK1EHQ4HmzVrVli7weYvlUrFfv3rX7foed3RY0ZLtO1LGWNMEAT23//931K/89ZeixYtYjabrd2xP/PMM50ae3M8Hg9bsGBBq+MyGo1s9erVMbUvfeaZZ9g//vEPplKpWt3vtddey1wuV7vjGz58eNh2FRUVEdd76KGHwtb78MMP29xvLO1L2/vMo1nX6/Wym2++uc3v8j/+8Y+YWspG4t13323zeya+OI5jP/nJT9r87axevZqZTKZ293Xvvfd26DOJdd1t27ax/v37R3V+er2eHTx4sMNj+v73vy+tG6n9bSjierNmzUrY2AkiVSC3PtGj0Wq1+Oabb/DWW29h3rx5yMvLg0KhQE5ODqZMmYJf/epXOHPmDH71q191qo5iouE4Di+88ALKysrw0EMPYejQodDr9VCr1SguLsZtt92GNWvW4PPPP49bXclYUCqV+Pzzz/HGG29g2rRpMBqNUKvVGDhwIB599FGUlZV1qALC3XffjdLSUvzwhz/EgAEDoFarkZ2djblz5+L999/HmjVroFar291PqAVpyJAhrTYhaG5pSoV401AUCgVWrFiBjz/+GFdffTVycnKgUqnQv39/3HfffSgtLcXdd9/d6ePcfffdOHDgAF555RUsXboUAwcOhE6ng0wmQ0ZGBsaOHYtHHnkEe/fuxWuvvdbmb2fx4sU4e/YsXnnlFVx11VXIz8+HQqGARqNBSUkJbrrpJrz99tv4v//7v06POxqmTZuGkydP4r333sMtt9yC/v37Q6/XQy6XIzs7GxMmTMCPfvQj/Otf/0JVVRVGjRrVJeOKhnQeO0GEwjHWSpAPQaQ5mzZtCsuw7gohkYxj9iRCP99nnnkGzz77bHIHRBAEQcSd1DUFEQRBEARBED0OEqcEQRAEQRBEykDilCAIgiAIgkgZSJwSBEEQBEEQKQOJU4IgCIIgCCJloCL8BEGkDbNnz261ixBBEATRPSBxSnRb+vXrh2eeeUZ6312PSRAEQRDdCapzShAEQRAEQaQMFHNKEARBEARBpAwkTgmCIAiCIIiUgcQpQRAEQRAEkTJQQhRBEEQUnDx5EqtWrcKJEyfgdrthMpkwdepU3HDDDVCpVBG32bx5M9atW4dLly5BLpdj8ODBuPHGGzFkyJBWj7N9+3YcP34cGRkZWLBgAXQ6XaJOiSAIIiWhhCiCIIh2+Pbbb/GnP/0JgiBgwIABMJlMOHPmDOrr61FcXIzf/OY30Gg0Ydu8++67WLNmDZRKJUaPHg2fz4fDhw+DMYYnnngCkyZNanGcP/7xj9iyZYs0nZOTg+effx7Z2dkJP0eCIIhUgSynBEEQbVBfX4833ngDgiDgwQcfxJw5cwAAPp8P//d//4edO3fin//8J370ox9J2xw+fBhr1qyBwWDA//7v/6JXr14AgtbXZ599Fn/+858xfPhw6PV6aZujR49iy5YtuO+++zB79mxUVFTglVdewYoVK/DjH/+4a0+aIAgiiVDMKUEQRBts2rQJPp8Po0ePloQpACgUCvzwhz+ESqXCN998A5vNJi1bvXo1AODGG2+UhCkADB48GPPnz4fT6cTGjRvDjnP27Fn069cPCxYsgFqtRklJCa699lqcOXMmwWdIEASRWpA4JQiCaIOzZ88CAIYPH95imdFoRO/evREIBLB//34AgNfrxeHDhwEAU6ZMabGNOG/v3r0t9lVTU4OGhgYAAGMMJ06cQEZGRvxOhiAIIg0gcUoQBNEGHo8HAMJc8KGI88+fPw8AqKyshM/ng9FoRE5OTov1+/fvDwC4cOFC2PwJEyZApVLhqaeewiuvvIKf/exn2LlzJxYuXBivUyEIgkgLSJwSBEG0gdFoBADU1tZGXC7OF//W1dUBQERhCgBqtRo6nQ4OhwMul0uar9Vq8ctf/hL9+/fHgQMH4Pf78eijj+KKK66I27kQBEGkA5QQRRAE0QbDhw/H1q1bsW3bNtx6662Qy5sumydPnkRlZSUAwO12h/1VKpWt7lOlUsHhcMDtdodl+ffu3Ru//OUvE3EaBEEQaQNZTgmCINpgxowZMJlMqKurw8svv4zy8nK4XC6UlZXh1VdfhUwmAwBwHAcgGCsaOh0JquBHEATROmQ5JQiCaAO1Wo2nn34aL774IsrKylBWViYtM5lMWLRoEf7zn/9IxfJFS6gYqxoJr9cr7ZsgCIIIh8QpQRBEO/Tt2xevvfYaduzYgTNnzkAQBBQXF2PGjBn45JNPAAB9+vQBEBSsQLA+aiTcbjccDgd0Ol2Lwv0EQRAEiVOCIIioUCqVmDVrFmbNmhU2/9ChQwCaSk0VFhZCoVDAarWivr6+RWLUuXPnAAQFL0EQBNESijklCILoIEePHsW5c+fQp08fDB06FEBQxI4cORIAsHPnzhbbiPMoC58gCCIyJE4JgiDa4fz58wgEAmHzzp49i+XLl4PjONx7771hyxYtWgQAWLlyJS5fvizNP3nyJL766itoNBrMnTs38QMnCIJIQzhGaaMEQRBt8uyzz+LSpUvo168fDAYDamtrcerUKfA8jx/84AeYN29ei23eeecdfPHFF1CpVBg1ahQCgQAOHjwIQRDw+OOPR+weRRAEQZA4JQiCaJevv/4a3377LS5dugSHwwGj0YgRI0bguuuuQ79+/VrdbtOmTVi3bh0qKiogk8kwaNAgLFu2TAoBIAiCIFpC4pQgCIIgCIJIGSjmlCAIgiAIgkgZSJwSBEEQBEEQKQOJU4IgCIIgCCJlIHFKEARBEARBpAwkTgmCIAiCIIiUgcQpQRAEQRAEkTKQOCUIgiAIgiBSBhKnBEEQBEEQRMpA4pQgCIIgCIJIGUicEgRBEARBECkDiVOCIAiCIAgiZSBxShAEQRAEQaQMJE4JgiAIgiCIlIHEKUEQBEEQBJEykDglCIIgCIIgUgYSpwRBEARBEETKQOKUIAiCIAiCSBlInBIEQRAEQRApA4lTgiAIgiAIImUgcUoQBEEQBEGkDCROCYIgCIIgiJSBxClBEARBEASRMsiTPQCCIIhUhzEGxhgEQZDeR5pmjLXYTqfTAQAcDgcAgOO4sHU4jgt78Twf8X3z7QiCILorJE4JguhxCIIAQRAQCAQQCASk96F/QwVoZ9BoNAAAu93e6XGHilWZTAae51v9y/PkGCMIIj0hcUoQRLeCMQa/3w+/3y+Jz0jCMx0JFcp+v7/NdVsTsHK5HHK5HDKZjKyxBEGkJCROCYJIOxhjCAQCkgAVxag4TTSJ9LYQRaooWEOFK0EQRLIgcUoQRErj9/vh8/ng8/nCRCjRecTP0uPxhM3nOC5MuCoUCigUCsjldMsgCCLx0JWGIIiUwe/3w+v1SmLU5/OlrQs+nWGMSZ9/KDzPS0KVBCtBEImCrioEQXQ5oss5VISSEE19BEGAx+MJs7SSYCUIIt7QFYQgiITDGIPX64XX64XH4yEh2o2IJFg5joNSqYRKpYJSqYRCoaDkK4IgoobEKUEQcYfEaM+GMRYmWEmsEgQRCyROCYKIGcZYmLggMUq0Raxitfn3K1Wg7zSRCFLxu55sSJwSBBEzHMfB5/PB7XaTGCVipjWxqlaroVKpUipm1e12o76+HlartdMNGQgiEjzPw2g0IicnB2q1OtnDSQk4RncUgiCiQLSOut1uuN1uqicaJbm5uQCA2traJI8kfZDL5VCr1VCr1VAqlUkbh9vtxvnz56FUKqHRaKj+K5EQAoEAXC4XvF4v+vfvD5VKlewhJR0SpwRBSDR3pwqCIFlH3W43WUc7AInTzsHzvCRUVSpVl7pAKyoq4PF4YDAYuuyYRM/FZrNBpVKhqKgo2UNJOqnjOyEIIimEClKO4+D3+yXrqNfrTfLoiJ6OIAhwOp1wOp1h7n+1Wp1wS6bVakVmZmZCj0EQIhqNBhaLhcQpSJwSRI9HFKROpxNut5u6LxEpS2isamNjIxQKBTQaTUJc7owxCIJArnyiy5DJZBAEIWUTArsSEqcE0UMR45xcLleLTkAEkQ6IzRusViuUSiW0Wi3UajV4nk/20AiC6AQkTgmiByHGkLpcrhb91AkinRFLmQGAWq2GRqOBWq2WLFBkjSKI9IHEKUF0Q0JvxKIr1OVyUVIT0SMQY6Y5jpPc/qEZ0CRUCSK1IXFKEN0QjuPg9Xoltz3VZyR6IowxKZlKJpNJQlWhUCR7aARBtAGJU4JIc0KtQKGZzZTYRBBNBAIB2O122O12KBQK6HQ6aDQacvt3E9xuN5YvX45PP/0UFRUVyMzMxNy5c/Hzn/8chYWFMe3r+uuvx/bt21td/tFHH2Hu3LmdHTLRBiROCSLNEa2kDoeD3PYEEQU+nw8WiwWNjY3QarXQarVkTU1j3G43li1bhtLSUuTn52PBggUoLy/Hhx9+iA0bNmDNmjXo379/zPtdvHgxdDpdi/kFBQXxGDbRBiROCSJNEQQBLpcLDoeDrKQE0QEYY3A4HHA4HFAqldDpdGFJVER68Nprr6G0tBQTJkzAihUroNfrAQB/+ctf8Mwzz+Cxxx7DZ599FvN+n332WfTt2zfewyWigOptEEQaEGoN9fv9aGxsRHV1NRobG0mYEkQc8Hq9MJvNqK6uhs1mo/a8aYLP58Obb74JAHjppZckYQoADz74IIYPH44dO3bgwIEDyRoi0QFInBJEGsBxHNxuN+rr61FTUwOHw0Hue4JIAIIgwGazobq6WiqITgSpqalBXl4ehgwZ0mLZ73//e+Tl5eGDDz7o0jHt2rULjY2N6NevH0aNGtVi+ZIlSwAA69ev79JxEZ2D3PoEkcIwxuByuWC328lCShBdDGMMfr8fPM9Lr55Mbm4uFAoFzGYzXC4XNBqNtOx73/seXn75ZaxcuRJ33HFHl43pyJEjAIDRo0dHXC7OF9eLhQ8++AANDQ3geR4lJSVYuHAhevfu3fHBElFD4pQgUhAx695ut1MZKIJIMowxBAIBBAIByGSyYEyq05HsYcWOVtepeFqO45Cfn49Lly7h8uXLGDBggLQsLy8P+fn5bbrP28uCj8Snn36K6dOnt7r80qVLAIBevXpFXC7Or6ioiOm4APDKK6+ETT/77LN44okn8OSTT8a8LyI2SJwSRAohCIKUoEGilCBSj0AgAOa0Q/hJ11kH44XqT/8GdPr2V2yDgoICXLp0CVVVVWHiFAC0Wi2qq6slEd+cuXPnok+fPjEdLy8vr83lTqdTOnYkxPkOR/QPE1OmTMGdd96JiRMnIj8/H5WVlVi9ejVeffVVvPTSSzAYDLj//vuj3h8ROyROCSIFEGswOp1OinEjCCJlES2Rly9fDpvvdDpRVVUFk8kUUZgCwKOPPhr38YjXy3hWWHj66afDpktKSvDYY49hzJgxuPXWW/Hyyy/j7rvvDgtrIOJLzw6gIYgk0Dzz3mKxoLq6mpKcCIJIeURxWllZGTZ/1apVcLlcmD9/fpeOR6xD2pplVLSsRqpXGitz5szB2LFjYbVasXfv3k7vj2gdspwSRBfDcRx8Ph/sdjtcLleyh0NEAcdx4HkeHMdJr9Dp0Peh2wCQlmVkZEjLQh9CGGNSVrj4Cp0OfU+kCBod+OWRs9LFxCkOKVgrVdt5gSYWoK+qqpLmWSwWPP/885DL5XjwwQdb3fb111/HqVOnYjreo48+ikGDBrW6XExQam7JFRHnFxUVxXTc1hgwYADKyspQXV0dl/0RkSFxShBdiN/vh9VqhdvtTvZQejw8z0Mmk7X6V3wfL3dhPCw3giBIr0AgIP0NfS8uJxIHx3GANnLsJgMQQIhI7WYF/ZtbThljeOSRR1BbW4uf/vSnGDp0aKvbfvPNNzEnRN12221titMRI0YAAA4ePBhxuTh/+PDhMR23NSwWC4D4/J6J1iFxShBdQCAQgM1mk1xMROIRRaZcLpde0YhO0VoZCATg8/natGpGmm5u4czJyQEA1NXVtThmqCW2LWts6LR4XgqFIqpz8Pv90l/xRVbYxCM+JHQ3kSqKU9Fy+sILL+DLL7/EDTfcgKeeeqrNbVetWhX38UyaNAlGoxHnz5/HoUOHWtQ6Xb16NQDg6quv7vSx6urqsHPnTgCtl64i4gOJU4JIIIIgwG63UzxpguA4roUAFV/Na1KGlgPyer1dbnVMhGs+GuuvUqlssV2oWG0uXIn4EipSW0sUSidEt/7ly5fx2muvYfny5bjmmmvwxz/+MSkCXKlU4gc/+AFeffVVPP3001ixYoVk1fzLX/6Co0ePYvLkyRg3blzYdg8//DD279+PX/ziF1i0aJE0f8+ePXC73Zg+fXrY+Vy8eBEPPfQQnE4nFixYgMLCwq45wR4KiVOCSABiz26bzUaiNE5wHAeFQgGlUgmFQgGFQgG5vOUlTLR49gThFY2Ybk3AKxQKqFSqsHXFovM+ny/sRd/hziP+r8SHh3Ql1K3/wgsvYP78+fj73/8OhUKRtDE9/vjj2LJlC0pLSzFlyhRMmTIFly5dwt69e5GdnY3ly5e32KaiogKnT5+GzWYLm3/69Gk8+uijyM/PR0lJCfLy8lBZWYmDBw/C7XZj6NCh+MMf/tBVp9ZjIXFKEHGAMQaO48AYg9PphM1mo7i/TtCeEBVFlMvlChOf5LJuifhZRRLnHMdFFK2hNSNJsMaX0GL+6ShSNRoNMjMzYbFYcP311+NPf/pTUoUpAKjVaqxcuRLLly/HypUrsXbtWmRkZODWW2/F008/HVMy1Pjx43HPPfdg3759OHnyJHbv3g2tVosRI0bguuuuwz333EMlpLoAjtEVhiA6jChKAcDlcsFms3VLC12ikcvlUKlUkhiNJETTVRzl5uYCAGpra5M8kujheV56KGjr4cDn88Hr9cLj8SAQCCRxxPGHMYb6+nrk5OQkzF0txhCno0gl4g9jDLW1tRg+fHi3iVHuKGQ5JYhOwHEcvF4vGhsb4fP5kj2ctCFUjCqVSikWTxQ9TqczLYVod0EQBHg8Hng8HmleJGu2VquVrKyBQAAej6fbitVEIMZBi+7+ni5ICEKExClBdBBBEGC1WikDPwraEqM+nw8ul0sSNiREUxPGGLxeL7xerzSP53npf6pSqUisdhDxoay7JE0RRGchcUoQUdI8rtRqtZKQagWe56FSqaBWq0mMdmMEQYDb7Zbq9opiVXwQiSRW3W43PB4P/d8j0F2Spgiis5A4JYgoIRd+28jlcqjVakmYiEKexGjPIVqxyhgLE6pkVQ2HXP1ET4fEKUFEAbnwI6NUKqFWq6FWq6WEmVCB4vF4qGpBD6a5WJXJZJJFXfwLAD6fT1qPHvyCkKuf6MmQOCWICJALPzIcx0miQq1WS67HQCAAh8MhCVKCiEQgEIDT6YTT6Qz7LqlUKhgMBhgMBgQCgbCHm54OufqJngiJU4KIALnwwxGTXdRqteRm9Hq9koig8llErDDGwqyqohVepVJBp9NBp9NBEAS4XC64XK6wRKyeCLn6iZ4EiVOC+A7RWkou/CBiqSC1Wi25FT0eD1wuF9xuN7nribgSWglAJpNBrVZDq9VKQlVsuiA2XuiJkKuf6CmQOCWI7+A4Dh6PBxaLpccmaMjlcmg0Gmg0GimG1OfzweFwwOVy9djPhehaxDARh8MR9p0UXf9ikp3T6eyRD0mCIIAxRlZUottC4pTo0ZC1NJhRLd78lUolgKA4sNvtcDqdPdZKRaQGfr8fNpsNNpsNSqVS+q4ajUYYDAZ4vV7JotqT4sLJikp0Z0icEj2anmwtbR5HKgiClKySqvF9YiF4sWuUmCQivsiS1L0RXf+NjY1Qq9XQaDRSnKrRaITb7YbD4ehRceJkRSW6IyROiR5HT7aW8jwv1ZqUy+VSvUmn0yklpiQSUQCLljCXyyW1KBVFp/g30vtorLih/cojiVee5yVhI34WWq22xbRCoUj450F0HDGZiuO4Fv+70FCUnmBNJSsq0d0gcUr0OHqitVShUECn00Gj0YDjOAQCAdhsNjidzrh+Bl6vVxKedrtdem+1WmG322G32xMeIyj2Kw8EAp2yoCkUihaiR6fTISsrS3qJcblE8hDLvTmdTsjlcul7npmZCaPRCJfLBYfD0SPCU8iKSnQX6MpK9Ah6qrVUo9FAp9NJsaQej0eqR9pRBEGA2WxGbW0tamtrYbFYJDHaFdbXrkK02Fqt1lbXMRqNklDNzs6W3osPAUTX4vf70djYCKvVKj1YiNn+8fjupwM91YrqdruxfPlyfPrpp6ioqEBmZibmzp2Ln//85ygsLGx3+23btuGGG25od72f/exneOqpp6Tp66+/Htu3b291/Y8++ghz586N7iQICRKnRI+gJ1lLeZ6HTqeDVquFTCaDIAhS5nOs1iOv14v6+npJiNbW1qK+vr7Tn6FarYbBYIBWq4VSqYRCoZD+iq/Q6UjvxYcNQRCkGpCtTYfOF4u8i9Y2MetbfMUiXqxWK6xWKy5cuNDi/ESh2qdPH+Tm5kqlkYjEE2pNDfUaqFQq+P1+OJ1OOByObu3y70lWVLfbjWXLlqG0tBT5+flYsGABysvL8eGHH2LDhg1Ys2YN+vfv3+Y+8vLycOutt0ZcFggE8PHHHwMApkyZEnGdxYsXQ6fTtZhfUFAQ49kQAMCx7vzr7GacPXsWBw8exOnTp3Hq1CmYzWYoFAq8//77Edffs2cPdu7ciXPnzsFiscDpdEKn06GkpATXXHMNxo8f32KbI0eO4Ne//nWrYxg0aBCef/75iMtOnDiB0tJSMMYwd+5cFBUVdexE4wxjTLLsdWdkMhn0ej20Wi04joPf74fD4YDT6YzqJux0OlFTU4O6urowq2is8DwPvV4vlf2J9ErleE6x8HuoYBWnrVYrzGZzhx9yMjIy0KtXL+mVk5PT7YVDqiDGW+t0uhYPbZFCTRhjqK+v7xb/o3TsLhUIBFBeXo5AIAClUok+ffq0WKehoQFmsxl/+9vf8Pbbb2PkyJFYvny59BC4atUqvPTSS5g6dSo+++yzsG1FT49MJkNGRkabn8/XX3+N22+/HUVFRdi7d2/YuqLldM+ePejbt2+nzpkxhtraWgwfPjztv3OdhSynacTHH3+MPXv2RL3+5s2bsXv3bvTu3RsDBw6ERqNBbW0t9u/fj/3792PZsmWtPinm5+dj6NChEedH4uuvv8bf/vY3SQStW7cOP/vZzzBmzJioxxtPRDd+IBCA2WxO2ezzeCCXy6HX6yVXshj32VbrR8YYGhoacOnSJZSXl6OqqiqmUAeO45CdnY3c3Fzk5OSECU+tVpt2N8JQRMtzJCuIiBgeYjabYTabpZuk2Wxu0/La2NiIxsZGHD9+HECwK1JBQYEkVgsKCqQQDCK+CIIgxT1rNBrpAUqv18PpdMJut3dbr0o6dpeqr6+PKj7d7/dLVs1nnnkm7B71wAMPYPXq1dixYwcOHDgg3Y9qampgs9mk9axWK4qKilqNIf/3v/8NAFi2bFlaX9vSCRKnacTgwYPRr18/lJSUoKSkBPfff3+b69944424//77YTAYwuafOnUKzz33HFauXInp06ejd+/eLbYdOnQoHn744ajG5fF48O677+LKK6/E3XffDa/Xi7/+9a9488038frrr0d/gnGE4zi43W5YLJZuW6RbqVRCr9dDrVYDCLq27HZ7q0LcZrOhvLwc5eXluHTpEhwOR1THUSgUMJlMyM3NhclkQl5eHrKzs3t0MhDP88jMzERmZmYLd6HT6QwTrQ6HA1VVVWE3QxGv14uLFy/i4sWLAILf25ycnDDrakZGRpecU09CrIuqVquh1+ulMBiXywW73d4tk6fEWFS5XN5hgVpTU4ORI0ciKysLJ06cCFv2+9//Hi+//DJee+013HHHHZ0aq8vlgs1mg9FobDPmGwAOHDgAm82Gfv36YdasWS2WL1myBEePHsX69esxZswYad8mk0lq6FBdXQ2z2Yzc3NwW2zscDqxbtw4AcNNNN3XqvIjo6bl3lzTk+uuvj2n91mJsBg0ahGnTpuGbb77BkSNHIorTWKioqIDb7ca9994ruVPuvPNO/OxnP4Pdboder+/U/mOFMQar1Rq1+Eo3VCoV9Ho9VCoVGGPSDbV5Zrrb7ZYso+Xl5VG56LVaLXJzc8OEaEZGRtpYW1IBMbNfDGvJzc0FYwxnz57F5cuXpVddXV2LcAvGGOrq6lBXV4dDhw4BgCSA+/Xrh8LCwh6V5JJoxHJUSqVSsvqLIjXSw0R3oDPJUrm5uVAoFDCbzXC5XNBoNNKy733ve3j55ZexcuXKTolT0bWtVCqRmZnZrjg9deoUAGD06NERl4vzjxw5AiBoTFGpVNJDn/i+tf/3mjVr4HQ6MWrUqIjeRJEPPvgADQ0N4HkeJSUlWLhwYafvrT0ZEqc9FNE1EQ/rl/gjP3bsGK644goAwPHjx6FUKrssAUR04/v9fpjN5m5ZhFtMIlIoFGCMweFwhLkifT4fKisrJTFaW1vb7j5NJhP69OmD3r17Iy8vr01XNtFxOI6D0WiE0WjEkCFDAAStptXV1WGCNZLV22KxSKE4SqUSxcXF6N+/P4qLi8PEAdFxxMQ/hUIhhcio1WrU1NREfDBjjMHhSz+PjE7BS4mEHUmW4jgO+fn5uHTpEi5fvowBAwZIy/Ly8pCfn48DBw60un17me2R+NOf/tRqEhIAVFdXAwB69eoVcbk4v6KiAkAw/tbn80lWZABS7GkkxJCBm2++uc1xvvLKK2HTzz77LJ544gk8+eSTbW5HRIbEaQ/kwoUL2LFjB2QyGUaNGhVxnaqqKnzwwQew2WwwGAwYOnQoxo4dGzHeJicnB+PHj8fvf/97jBkzBj6fD4cPH8bixYu7LD6H4zi4XC5YLJZul4Erdr9RKBRhcXOCIMDtduPs2bM4deoUysvL2w1hyMjIQJ8+fSRBSuImeYhJHmKihxgHHCpWm1u7vV4vTp06hVOnToHjOPTq1Qv9+/dH//79kZWVRRbuTuLz+WA2m2Gz2aDT6cBxnNSsQhR0AODwCbjz36eSPNrYef/mQdArgyKso27+goICXLp0CVVVVWHiFAh6DaqrqxEIBCKKvblz50ZMbBIJBAJShQW1Wg1BEJCdnd3meFwul/S+trYWcrkcWq0WKpVKGhMAyZOm0+mkeHuNRgOfzwePxxMxq766uhrffvstZDJZq2WmpkyZgjvvvBMTJ05Efn4+KisrsXr1arz66qt46aWXYDAY2g3BI1pC4rQHsGfPHuzatQuBQAB1dXU4ceIE5HI5HnjgAeTl5UXc5sSJEy1iivr27Ysnn3wy4hPqf/3Xf+Hdd9/F3r17oVAocP3117f7pBkvuqsbX6FQwGg0Su57m80mdb0RBenFixfbFKRarVYSon369IHRaOzCMyBiQYw3zcnJwciRIwEEEzXOnz+Pc+fOtXj4YIyhsrISlZWV2LZtGzIyMiShSu7/zuH3+6WKDGIiEc/zUjmy7kSsbn7x+n/58uWw+U6nE1VVVTCZTK3u69FHH211v+L32efzoU+fPpKFU4zHbms7IOiuF0MAGhoaoNPpIt7feJ5Hr169UFdXJzVuyM/Pj+g1WrlyJQKBAObOndtqMvDTTz8dNl1SUoLHHnsMY8aMwa233oqXX34Zd999NxkCYoTEaQ/gwoUL2Lx5szStUChwzz334Morr2yxrlarxXXXXYfJkydLF6Hz58/jww8/xKlTp/C///u/+N3vftfCXa/T6fDQQw8l9kRC6M5ufLlcDoPBAI1GI7nv6+vrcebMGZw6dQoXLlxo9QapVCpRVFQkWeSys7PJmpbGGI1GjB49GqNHj4bX60V5eTnOnTuH8+fPt6iu0NjYiLKyMpSVlUGlUmHw4MEYNmwY8vPz6TvQCZoLVJ7nIete+jQmN794X6isrAybv2rVKrhcrphzI0SsVivcbjfy8vKiFsoKhUKyrKpUKhQXF8PtdqO+vh4OhwM1NTXS7yRUfCqVyqgK80fr0o/EnDlzMHbsWJSVlWHv3r2YMWNGzPvoyZA47QEsW7YMy5Ytg9frRVVVFb788kv8/e9/x969e/HUU0+FxZ2KlpdQRo4cieeeew6//vWvcezYMaxbtw433nhjV59GGGI2vtls7jZufJ7nYTQapZJQjY2NOHToEI4dO4bz58+3Kkg1Gg0GDhyIQYMGobCwkEqddFOUSqVUqYMxhpqaGpw7dw7nzp1rEV/s8Xhw6NAhHDp0CFlZWRg2bBiGDh3a5cmJ3QlRpPI8D4NKjhW3D0dACKRVNRCdovVrQ7RuftH9XVVVJc2zWCx4/vnnIZfL8eCDD7a67euvvy4lMDU/tsPhkGrRigiCgBtvvBGDBw+OuD+DwYCSkhIAQUuuWFZPrVZLFUnEBhmx1t0+efIkDh06BJ1Oh4ULF8a0rciAAQNQVlYmxcUS0UPitAehVCrRt29f/PCHP4RMJsPatWuxdu1aLFmypN1teZ7H0qVLcezYMRw4cCDp4tRut7ebxZkucBwHg8EAnU4Hv9+PAwcOYP/+/Thz5kyrJW3UarUkSIuKikiQ9jDExJT8/HxMmTIFNpstzP0f+iBjNpuxfft27NixA3369MGwYcNQUlLSo0uBdRTGGAKBADiOg04pA8fJpHjUdBKpbeH3+9ss2t/ccsoYwyOPPILa2lr89Kc/bTOj/Ztvvok5IWr27NltLh8xYgQA4ODBg9I80fskJhMCwPDhw2M6rljbdNGiRR1O7BVjxinRNHbo6tRDmTlzJtauXYs9e/ZEJU6BpifmjnQNiheMMVgslrAg+HRGr9dDr9ejtrYWX375JcrKylqtU6pSqVBSUoJBgwahd+/eFFNISBgMBowaNQqjRo2Cx+PB6dOncezYsTDXK2NMqqmqVCoxaNAgDBs2DL169SK3f4yIVkaO4yCTycJiUruDSA0EApKbvzmiOBUtpy+88AK+/PJL3HDDDWE95yOxatWqiPPPnDkDmUzWogEFYwxutxt+v1/6LhcUFIQJ50mTJsFoNOL8+fM4dOiQlOQrdqETa5ReffXV7Z122HFXrlwJoGMufQCoq6vDzp07AbRe5opoHRKnPRQxMSYW66OYcCQWfe8qQrs9NTQ0dIv4UrFW6cmTJ7Ft2zacP38+4npKpRIDBgzA4MGDpSQBgmgLlUqFESNGYMSIEWhsbMSxY8dw/PjxsN+61+vFkSNHcOTIEWRkZEhuf0qYiw1RpEqxqN+JVFHcpTOtxaGKRorLly/jtddew/Lly3HNNdfgj3/8Y6cecgKBQKtGB7GlcCSUSiV+8IMf4NVXX8XTTz+NFStWQKfTQRAEfPjhhzh58iQmT56McePGhW338MMPY//+/fjFL36BRYsWhS3buXMnysvLUVBQgJkzZ7Y65j179sDtdmP69Olh537x4kU89NBDcDqdWLBgQVTxrUQ4JE57KEePHgXQejvSSOzatQtA68X9E4EoTL1eLxoaGtLeKiFe6Pfv34/du3dHfDhQKBQYMGAABg4ciOLiYnK/Eh0mIyMDU6ZMweTJk1FZWYljx47h1KlTYQ94jY2N2LlzJ3bt2oWSkhKMGzeu1ZqRRGREi6koUOVyebfI7I8Uhxrq1n/hhRcwf/58/P3vf5cslR1BjBttjpitL5Zda43HH38cW7ZsQWlpKaZMmYIpU6bg7NmzUsz18uXLW2xTUVGB06dPRyy+LyZCtdeu9PTp03j00UeRn5+PkpIS5OXlobKyEgcPHoTb7cbQoUPxhz/8ob3TJyJAd71uSmNjI7Zs2YK5c+e2iHc5ePAg/vnPfwJoGc+zYcMGTJkyJazlKWMMX331FdasWQOO42Jyj3SW7lK/VAxHKCsrw5EjRyKKbJPJhNGjR2PIkCGdutATXQPPBwuai6/Q6VDEaa1WG7EjVGgNzeb1NOMFx3EoKipCUVERZs2ahTNnzuDYsWMoLy8PG8vp06dx+vRp9OrVC+PGjcOAAQMonjkGRJEqWlDFgvfp/lAdGoeq0WiQmZkJi8WC66+/Hn/605+Scr0Sa6KKCVArV67E8uXLsXLlSnzxxRcwGAxYtGgRfvOb37QpbJvj8XiwevVqAO23Kx0/fjzuuece7Nu3DydPnsTu3buh1WoxYsQIXHfddbjnnnuohFQH4Vg63/F7GPv27cMnn3wiTYuFuAcOHCjNW7ZsGcaPH4+amho88sgjUoZvdnY2PB4PLl++LHXKWLRoEb7//e+HHePhhx9GQ0MDevfuLfUZvnjxotQp5Z577ulw5mJHsFqtsNvtXXa8eOPz+XDmzBkcPHgwLLtVhOd5DBo0CKNHj0ZBQQHF/iUR8eYb+jf0fVsCNBGEClVR4IgZ46F/xfcdwWaz4fjx4zh69CgaGxtbLDcajRg3bhyGDRvWIh6wu8MYQ319PXJycjr0/xbjUTmOkxKp0v1221aiVCJoy3IqLuN5HkqlUrJWezweqQlAQUFBl4ehdQaxdevw4cN7/L2ALKdphNVqbVGGgzEWNk90E2dkZOCuu+7CkSNHcOnSJZw5cwaMMWRmZmLatGmYP3++lOUYyuLFi3HgwAFcunQJhw4dQiAQQFZWFmbOnImFCxeGCeFEIggCzGYzPB5Plxwv3pjNZhw+fBhHjx6NeA56vR6jRo3CiBEjuqzFa0+H53nI5XLI5XLJ9Sq+b+uGKwrDUFEoWjkjWT0BhIkQsb1vc/EXanVtLnybT/M8D4VC0eYNSxyb3+9v8WpNFBkMBkycOBFXXHEFzp07h/3794clUVmtVmzevBk7d+7EyJEjMWbMGCpHFSWh8ajdxdXfVqJUVyOTyZCZmQmPxyN1eRI7ehkMBmRkZFBIVBpDllMi5fD7/WhoaGi1jFIqU1NTg507d7aa4NS7d2+MHj2a3KUJRC6XQ6FQhAlQuVze4vMWrVmh1sdIFsnOXiJFD0TzWqQdQbTGRbLshs5rLmLF8wkVrD6fL6JQqqqqwv79+3H69OkW587zPAYPHoxx48ZJ59Vd6azltDni/6g7lJ4KtQoT8YMsp02QOCVSAjHxyefzob6+Pu0u3DU1Ndi1axfOnTvXYplCocCwYcMwevTodvtEE7EhClGFQiG59pqL0OaiTHx1lQUrnuI0WkJFeXMrcSiCIMDn88Hn88Hr9YYJVqvVKsVIR6qQ0adPH0yYMCGmeL50It7iFAgXdeluRQXQbsF+IjZInDZB4pRIOqIw9Xg8aGhoSKu4rNraWuzatQtnz55tsSw7OxujR4/G0KFDe1y8XiIQ6yAqlUooFIoWQlQUWqLIEgVosr9PyRCnrSG6PUNFvUKhiPg5ii+bzYaDBw+irKwsYvx3nz59MG3atJgqf6QDiRCnIt3JikoCNX6QOG2CxCmRVERh6nK5YDabkz2cqKmrq8OuXbtw5syZFsvy8vIwefJk9OvXr8dfYDqDTCaDSqWCUqmESqUKs/oJgiCJUPGVqlaoVBKnrdFcrDYXrH6/Hy6XCwcPHsSuXbtQU1PTYh8DBw7ElClTuo13IJHiFOheVlQSqPGBxGkTJE6JpONwOCJmCqci9fX12LVrF06fPt1iWX5+PiZOnIj+/fv3+AtLR2hLjIoJD81dz+lAOojTSIRaqlUqlZRcIiZhfvXVV7h48WLYNhzHYdiwYZg8eXJYObp0JNHiVKS7WFG7OpO/O0LitAkSp0RSsdlsEYsgpxr19fXYvXt3i2oJQLBjyqRJk1BcXNzjLyixwHEcVCoV1Gp1m2LU4/Ek3TXfGdJVnDaH5/kWDw8nT57E+vXrwzL8gaBQGT16NCZMmJC2dR67SpwC3ceKSgK1c5A4bYLEKZEUGGOwWq1SS9RUpaGhAbt378bJkydbLCsoKMD06dNRWFjY4y8k0SJaR0VBKn5u3UmMNqe7iNPmiGJVoVDg1KlT+Prrr1FXVxe2jlKpxLhx4zBu3Li0i7vuSnEq0h2sqGLVCCJ2SJw2QeKU6HIYYzCbzXC73ckeSqs4HA5s374dx44da7EsPz8fs2fPRlFRUVqWu+pqFAoF1Go11Gq11EmGMQaPxwO32y0Vze6udFdx2hyO43Dy5Els3bq1hTdEo9Fg8uTJGD58eNrUnkyGOAW6hxWVBGrHIHHaBIlToksRBAENDQ3wer3JHkpEAoGAlPTRfIy5ubmYN28e+vfvn9Zdq7oChUIBjUYDjUYj3aQCgUCYIO0pl56eIk5F/H4/Dh06hNLS0hYPoNnZ2bj66qtRWFiY8g92yRKnIqFW1FSoOhErYmUIInpInDZB4pToMgKBABoaGiLWTEwFLl26hM2bN6O+vj5svslkwrx58zBixAg0NjamrLBONjKZDFqtFhqNRrop+f1+uN1uuN3uHvu59TRxKuLxeLBv3z7s37+/hRAdPXo0rrnmGsjlcrhcrpR0XydbnALhVtTOtKlNFiRQY4PEaRMkTokuIRAIoL6+PiWtJXa7HVu3bm0RV6pSqTB//nxMnToVPp8PFosl7W4OiYbneclCKsYUBgIBuFwuuFyulH0Q6Up6qjgVcTqd2L17Nw4dOhRm/RN/X1OmTEEgEIDT6YTb7U4ZC2EqiFMRsVRTOrr5qZtU9JA4bYLEKZFwUlWYBgIBlJWVYffu3S1E1JgxY7B48WLo9fq0SNzqakRBKiY1CYIAt9sNl8sFj8eT7OGlFD1dnIrU1tZi48aNqKqqCptfUFCAG264AcXFxWCMwe12w+l0Jv17lEriFGiK40xHNz8J1OggcdoEiVMioQQCAdTV1aXc0/7FixexefPmFoX/8/LycN1112HgwIHw+/0wm81k/fsOuVwOrVYLrVYrxcJ5PB5JSNClJDIkTptgjOHIkSPYtm1bC/E5btw4XHPNNcjMzAQAyZrqcDiS4rFINXEKpLebnwRq+5A4bYLEKZEwBEFAbW1tSglTm82GLVu2tOjspFarMXPmTMycORNKpRIulwsWi4UEF4JWUq1WC5VKBSBY9snpdKZsrGCqQeK0JU6nE9u2bWtRDUOj0WDWrFkYN24cdDod5HK59BDkcDi61JqaiuJUJDRZKtU8Um2RqBjUAwcOYPPmzdi3bx/27duHqqoqqFQqlJeXd3ifbrcby5cvx6effoqKigpkZmZi7ty5+PnPf47CwsI4jr4JEqdNkDglEoLYltRqtaZEZrvf78f+/ftRWlra4mI+atQoXHXVVVJv8MbGRjidzmQMM2XgeR46nQ5arVZyJbpcLjidzh6b2NRRSJy2TkVFBTZu3IiGhoaw+b1798bs2bPRq1cv6HQ6KXzE7/fD4XDA6XQm/MExlcUpkJ5u/kQV6f/e976HdevWhc3rjDh1u91YtmwZSktLkZ+fjylTpqC8vBz79u2DyWTCmjVr0L9//3gMPQwSp02QOCXijhhjmpWVBYVCkXSBeunSJXz99dctWqQWFBRg9uzZGDx4MLRaLfx+PxoaGtLKEhFvFAoF9Ho91Gq1JAacTiecTidZSTsIidO2CQQC2L9/P3bv3h322+N5HlOnTsX48ePDQkpkMhkEQYDL5YLD4UjY7zXVxSmQXm5+UZiKzQXi6eJ//fXX4XK5MG7cOIwdOxYjR47slDh98cUX8corr2DChAlYsWIF9Ho9AOAvf/kLnnnmGUydOhWfffZZXMYeConTJkicEnElNMaU4ziYTKakCVS/34+dO3di3759YfM1Gg2mT5+OESNGICcnB0qlEm63G2azOS2sD4lApVJBr9dLrnvRjZrKjRLSBRKn0WG1WrF582acO3cubH5RURGuvvpqGAwGAMHfr06nk6pDuN1u2Gy2uMeGp4M4FUn1bP5QYSqOL5ExqHl5eR0Wpz6fD8OHD0djYyO+/vprjBo1Kmz57NmzcfToUWzYsAFjxoyJ15ABkDgNhZrgEnFDtJiKFx/GGOrq6uDz+WA0GqWnz66grq4O//rXv8KEKcdxGDNmDL73ve9hzJgxyMvLg1KphM1mQ0NDQ48Upmq1Grm5uZJIdzgcqKmpQX19PQlToksxGo1YsmQJFi9eDJ1OJ82vqKjABx98IJV6c7lcqKurQ21tLVwuV9h3WHy46mn4/X4IggCe5xNaV7S2thZFRUUYMWJEi2WvvvoqioqK8NFHH4XNjyRMAaRsOMKuXbvQ2NiIfv36tRCmALBkyRIAwPr167t6aD0KEqdEXGitXFRXC1RBELBv3z589NFHYcX0s7KycMstt2DWrFnIzMyEyWQCz/Mwm80tWi32BLRaLfLy8pCdnQ2ZTAa73Y7q6mo0Njb26LAGIvkMGDAAd955JwYOHCjN83g8WLduHdavXy8lRfl8PpjNZtTU1MDpdEKpVCInJwcmkwlqtTpZw08agUBA8liJltR4I3rCLBYLXC5X2LK77roLALBq1SppXmvCVEQUqKnEkSNHAAQbRURCnC+uRyQGat1AdBpBENqsYyoKVJPJBKPRCAAJcfFbrVZs2LABFRUVYfPHjBmDadOmQaFQwGAwwGAwpHy3qkTAcRy0Wi30er0Ut2ez2ZJWqocgWkOtVmPhwoU4fvw4Nm3aJP1OT5w4gcrKSlx99dUoKioCELQaWiwW2Gw26HQ66HQ6ZGdnw+fzwW63txBR8YAxBr8vtSx+QQRwXAC8TAaO4yE0i0OVK7hOiVaO45CXl4eKigpUVVWFJQXl5uYiPz8fBw8eBBBZmN50003YsWNHTMf89NNPMX369A6POVYuXboEAOjVq1fE5eL85vcZIr6QOCU6BWMsqiSiRApUxhiOHz+OzZs3h2WS63Q6zJs3D8XFxeA4DllZWVCr1fB6vWhoaOgxgozjOOh0Ouj1evA8j0AgIFUkSDWXGkGIcByHYcOGobCwEF9++SUuX74MIFgO7pNPPsGECRMwefJkyGQyAEHLoRjbLorUrKwsGAwG2O32uFbg8PsY1n1qjdv+uooFNxihUHbOolpQUBBRnALBeODq6moAiGgxnT17Nnr37h1xvxwXWTjn5eV1aryxIn5PtFptxOXifGrMklhInBIdhjEGs9kcdWmhRAhUl8uFjRs34vTp02HzBw4ciDlz5kCj0UAmkyE7OxsKhQJOpxMWi6VTx0wntFotDAYDZDIZ/H4/rFZrjy+TRaQXGRkZWLZsGfbu3Ytdu3ZJD5V79uzBhQsXcM011yA7O1taX/QIhIrUzMxM6HQ62Gw2iqXuJAUFBQDQotOXy+VCVVWV5PqP5Mp/5JFH2ty3WB4rmYgP7D09ISnZkDglOkxjY2PMF/p4CtTz58/j66+/DnuCVSqVmD17NoYMGQKO46BUKpGdnQ2O49DY2NhjnnbVajWMRiPkcjkCgQAsFguJUiJt4XkeEydORN++fbF+/XrpAbO2thYfffQRZsyYgVGjRoUJCsYY7HY7HA4H9Hq95O73er2wWq1Ur7eDiOJUtGSLfPbZZ3C73bjhhhs6XDVAfPBIpkAVk/Fau1eI19HQpD0i/pA4JWIitLh+R8VOZwWqz+fDtm3bpNgmkeYlZ9RqNbKysqTQg2T36u4KlEoljEYjlEolBEGA1WqFw+Eg9z3RLcjPz8ftt9+OrVu34tChQwCCMaebNm1CVVUV5s6d2yJbnTEmxVaLItVkMsHtdsNqtXYoAVCu4LDgBmNczqkr4HkevEwGuTwoADtzPRBjLkMtpxaLBS+++CLkcjkeeOCBVoXpH//4xxZerkiEuvgfffRRDBo0qMPjjRUx7KC5+BYR54sxz0RiIHFKRI0oTB0OR6fd8R0VqLW1tVi7dm2Ya57neUybNg3jxo2TLmharRYZGRntJmt1F8RkL7VaLVmM7HZ7j4mrJXoOCoUCc+bMQXFxMb7++msp4en48eNoaGjAokWLpAfUUEIf1gwGAzQaDfLy8uB0OmGz2WKy9HEc1+nYza6G4wRwnAwymaxTJZyaW04ZY3jsscdQW1uLp556qk0huWnTppgTom677bYuFadimazmxg8Rcf7w4cO7bEw9ERKnRFSIwtTlcrXotNSZfcYiUE+ePImvvvoqTGiaTCZcffXVMJlM0jy9Xg+j0Qi/3x9Wd7U7wvM8jEYjtFotGGMdutESRDoyYMAAFBQU4IsvvkBlZSUAoKamBh999BEWLlzYauKNGOZit9ul345Go4HD4YDNZuu2XgaxbJNMJoNcLoff7+/QuTYXpy+//DI2bNiA66+/Ho899lib23788ccxHStRJbHaYtKkSTAajTh//jwOHTrUotbp6tWrAQBXX311l46rp0F1Tomo4DgOHo8HZrM5rvuNpg6qIAjYtm0b1q1bFyZMr7jiCtxyyy1hwjQjIwNGoxFer1fqVNVd0el0yMvLg1arhdvtRm1tLSwWS7c+Z4IIRavV4oYbbgjr1ONyufDpp5+irKysTfEltisWrz96vR55eXnQaDRdMfSkwBiTRKlcLu9Qn/vQhKg//vGPeP3113H11Vfjtddei7uQ7KiAjoaHH34Y06ZNw5o1a8LmK5VK/OAHPwAAPP3002Gxp3/5y19w9OhRTJ48GePGjUvIuIggZDklosLn86GhoSEh+27Lgup2u7F+/XpcuHBBWl+lUmHBggUoLi4O209WVhY0Gg08Hk+37vikVCqRkZEBhUIh1XikDGSipyKTyTBr1izk5uZi48aNkst6y5YtqK2txZw5c9rsmiQ+yGq1WhiNRmRlZUGr1Xbrqh5+vx9yuVxKPIol/CfUcvrb3/4W8+bNwxtvvAGFQpHQsbYlfDds2IBXXnklbJ7X68XChQul6SeeeALz58+XpisqKnD69OmITVgef/xxbNmyBaWlpZgyZQqmTJmCS5cuYe/evcjOzsby5cvjcGZEW5A4JdpFdI8nUuxFEqgXLlzA559/HhZGkJ2djcWLFyMzM1Oax3EcsrOzoVKp4HK54m7dTRWau/DFcjndVYQTRCwMHz4cOTk5+PzzzyVr17Fjx1BfX99qHGooTqcTLpdL+o3l5uaipqamK4aeFPx+P2QymdTfPlqPi0ajQWZmJiwWC5YuXYrly5cnTJiGjrUtgVpfX4+9e/eGzWOMhc0L7RjYHmq1GitXrsTy5cuxcuVKrF27FhkZGbj11lvx9NNPUzJUF8AxurMRbSAIAmpra7vMVcxxHEwmE06ePIl//etfYeVeSkpKMH/+fCiVSmkez/PIycmBQqGA3W6H1Zp+hbGjQafTwWAwgOd5uN1uNDY2kvs+TcjNzQUQTOYjEo/T6QyLQwWCguraa6+NWlQoFAoYjUacPn0aJpOp0xnuqUx7LUY7u368ENuydmcYY6itrcXw4cN7fJ1VEqdEqySjBBNjDLt378auXbvC5k+ZMgUTJ04M+8HKZDLk5ORALpdLnWG6GwqFApmZmZIL32q1kgs/zSBx2vUEAgF8++23YRnXPM9j5syZGD16dFQ3fvH6l5eXlxQx1pWIglOMSW1vvWR9FqlQpD+RkDhtons/hhAdIrSWaVcKU6/Xiy+//BJnz56V5qlUKlx33XUt+hzLZDKYTCbwPN9tC8wbDAYpQYxc+AQRPTKZDLNnz5biUAVBgCAI2Lx5MywWC6688sqoBaroUuZ5Xmr/291KtIlxuqGZ/M1JtjAFgp48juM6lMhFpBckTokwRGHqdDq7tJuSxWLB559/HpZ0lZmZibvvvhtFRUVhltHmwlSsc9hdCLWWer1eWCyWbl+nNZUJ+Bk8bgFud/Cvx8XgdgvwehgEARACDIEAIAgMQgDS+0AguIwxG4QAA8cDvAyQ8Vzwr4wD/908XsZBxn/3Vwao1DxUaq7FX5msZ1tTYmXEiBHIycnBmjVrpOvZgQMH4HK5MH/+/KitcKIg7UiMZroQ2p2puUBNBWEqIh6fBGr3hsQpEQbHcZIg6irOnz+P9evXh1lp+/Xrh2uuuQY8z0tlpoBg9n5OTg54nofZbO52Lu5Qa2l3DVVIJRhjcLsY7NYA7FYBDnsAHjeTXm63AL8vdazVCiUHtYaHSsUFRauGh07PQ2+UwWDkoVRxPd4d2JyCggLcdtttWL16tZTgdPLkSbhcLixatCgshr0tRCuq6FrmOE6yyHYXIgnUVBKmIoFAIKyLFNH9oJhTIoxAIIDa2touueAyxrBv3z5s27YtbP6ECRMwZcoU6clYTJJSKBSSW6e7CVOyliYWQWBw2AVJhNqsAThsAuxWAX5/97kEKpQcDEYZdAYeBmNQtOqNPLRaHhzfs2/kXq8Xa9asQXl5uTQvLy8P1113HbRabYv1GWOor69HTk5OCxHEcVyYQE0V0RYvRAEuetJS9RyTUaQ/kVDMaRMkTgmJ0IL4XXGsrVu3Yv/+/dI8uVyO+fPnR2xVp1AoYDKZpJCD7lSDMFJsKdFxBIHBagnAXB+Aud6PxoYAHHYBnb3SKb+zVqo1QRe7UsVDLgf4Zm56mYwLc9Xn5GSB5znUN5jDQgBEt78QAAJSSABDwI9g+IC7KZzA5+3c4Hke0BtlyMySIcskQ1aOHHoj3+NugIFAABs2bMDJkyeleZmZmVi6dCkyMjLC1m1LnIqEirjuZkWNNkkqmXS3DH4Sp02QOCUkGhoausQaKQgCvvnmGxw9elSaZzQasXjx4rBuTyKhMaaBQKDbZOfL5XJkZWWRtbSTeDwCzHVBIWquD8DS4Ecgxo9RreGgNwQtjmotD3VInKdaE3SX8x20PMYjWz8QYJJYDf3rcn5nDbYFY2BjQaHkkJUTFKpZOTJk5sihUHT/G6JYoP/AgQPSPK1Wi6VLl0r/K3G99sQp0D2tqKHClOO4lBao3SmDn8RpEyROezjixcdms0XslBFv/H4/1q9fjzNnzkjzcnNzsXTp0oiutVBhajab4fF4JBd/OgtUsRuN+Nmn63kkA6c9gJoqf1CM1gWtotHAcYBWz0Nv5GEwyCSXt94gg0KZuBtBV5WS8niCYQpi6ILdFvzrdERvzTNmyJCZI0O2SY7cAjnUmu6ZdCIWaN++fbs0T6lUYvHixejdu7e0TjTiVCRU0InZ7+lI8xjTUOtwqgpUcczpDonTJkicEnC73QlrTRpKpJivwsJCLFmyBCqVqsX6zYWpaNUNjUFNN4HKcRwyMjKg1Wrh9/thNpu7JIwinRECDA11flRX+lFT5Yfd2r5liuOBjExZ0DJoksOYIYNOz4NPQrZ7suuc+v0MDlsAVosgWZetluisexnZMuQVyJFfqEBmlqzbxa0eOXIE33zzjSQkZTIZFixYgJKSkpjFKRBuRU3HklOtJT+lg0DtDvGnJE6bIHHaw/H5fKirq0v4U77b7cZnn32G6upqaV6/fv1w7bXXRowZ4nkeJpMJMpksYrmodBSocrkc2dnZkMvlcLlcsFgsaWtdSTRul4Cayz5UV/pRV+1vN2lJpeaC7unv4ikzs2SQyVPj4p5scRoJn4/B8p1QFS3QvnaqEihVHHK/E6q5+XIoVelvqQKAs2fPYu3atZIY4zgOc+bMwYgRI2IWpyKiUEplMdec9rLySaAmHhKnTZA47cEIgoC6urqEX2gcDgdWrVoV1tt48ODBrdYZDBWeZrO51Tqm6SRQtVqtlHBhtVq7tIZsOsAYg6UhgOpKH2ou+9FobtuyZzDKkJMXtIpmm2TQaFM3uScVxWlzGGOw2wSY64JCtbbaD5ezDasfB2TnyJHXS46CIgUMGekd81dZWYnVq1eHlbObO3cuCgoKOiROgXAxl+pu/mjLRYnnlKqxtemeIEXitAkSpz0QMc60LeEXLxobG/Hpp5+G9bwfNWoUZs+e3eqPLycnByqVCo2Nje2KuFQXqBzHITMzExqNhtz4EbDbAqi44EXFBV+bsaO8DDDlyZHfS4G8XnJo9ekjhtJBnDaHMQa7VUD15eDDQkOtv81qBxmZMhQVK1BUrEzbONX6+nqsWrVKuuZwHIdly5ahV69eHRYK6eDmj7WOaSrWPQ0lnROkSJw2QeK0h9IV5ZiaX+wBYOLEiZgyZUqrP7ysrCxoNBrY7fYwQdsWqSpQFQoFsrKyIJfL4XQ60djYmNLWk67C4xZQWe5DxQUvzPWt39y0Oh55veTIK1TAlCtPGTd9rKSjOG2Oz8tQW+1DTaUfNVU+eNyRv8ccF3yIKCpWoldvBeRplv1vsVjwySefwOFwgOM4LFq0CAUFBRGTNWMhVcsydVRoituluuBON0icNkHitAfi9/tRW1ubUKFUVVWFzz77LMxNNmPGDIwfP77VbTIyMqDT6ToknFNNoKrVamRmZoLjODQ2NsLpdCZ1PMnG72eorvSh4oIPNZd9rVrhcnJlyC9UIK9QAb0hdV31sdAdxGkojDE0mgOouexHVYWv1RAMmQwoKApaU3ML5B0uxdXVmM1mfPLJJ1IHKa1Wi8zMTKjV6k7tN9Xc/J21gKaSQD148CC2bNmCsrIy7N+/H1VVVVCpVGHJt+3hdDqxadMmfPnll9i/fz/Ky8shCAL69euHxYsX48c//rFUj7o5119/fVjlh+Z89NFHmDt3brtjIHHaRPoGZxAdgjGGhoaGhF4YL168iDVr1kjua47jMHfuXIwYMaLVbQwGA3Q6Hdxud4csumIDAZPJJLU6TZZANRgMMBgMCAQCqK+v77FufMYYzPUBXDzjxeUKX6ttQA0ZPHoXK1FUrIRGm37Wjp4Gx3HIzJYjM1uOwSPUsFmbQjNCy1YFAkDFRR8qLvqgUnEo7KtAcYkq5eNTs7KycOONN2LlypXSvMbGRgDolEAVBAGMMak1aDJFXTxc82ILUVFwJ1Nsv/baa1i/fn2n9rFy5Uo88cQTAIChQ4di7ty5sNlsKC0txcsvv4xPP/0Uq1atCquF25zFixdDp9O1mF9QUNCpsfVESJz2EMQ408bGxoS6lc6cOYO1a9dKF12e57FgwQIMHDiw1W20Wi0MBgO8Xi/MZnOHj51sgRoaX+r1etHQ0JB0i0IyEAIMleU+nDvlgaUh8o1PreFQVKxE72IljJmpLVaItjEYZRg6SoMhI9VoqAsK1cpyX1hXK4+H4dwpL86d8iK3QI7+g1TI65W6mdXZ2dlYunRp2PXDarWC47iIZe+iRXTry+XysFjUriSeMaPiucjlcvj9/qQJ1CuuuALDhw/HmDFjMHbsWIwdOxZAUEBHG3+qUChwzz334Mc//jEGDBggza+ursYdd9yBQ4cO4Ze//CXeeOONVvfx7LPPom/fvp06FyIIufV7EC6Xq1Pirz0uXLiA1atXS4JMLpdj8eLFbf5Y1Wo1srKyEAgEUFdXFxcxlwwXv0wmQ3Z2NhQKRbdrrxotHreAC2e8OH/aC4+75f9RLufQq7cCRf2CMaTdrWZma3Q3t340BAIMNZeDYRzVlT5E+lnrDDz6D1ShT39lSsamMsZQU1MjlYQCmuoUd0agiiQjsShRxxQz5FMhXAEAioqKoFKpcPbs2biUlyotLcWiRYugUqlw5swZKJXKsOWiW3/Pnj2dEqfk1m+CfGg9BL/fn1DBdPnyZaxZs0YSlyqVCjfccEObP1SlUomsrCwIgoD6+vq4WRlFC6rP54PRaGw1TiheKJVK5ObmQi6Xo7GxsccJ00azH/t3OfDVaitOHHa3EKbZuTKMn6rF/KVGjJ2sRW6+oscI056KTMahV28lJkzXYf5SI0ZP0LSwkDtsAg7vd2HDaisO73PCYU+9zG+ZTCbFjgPfxds2NobF0ncU0a3P83yXlD+KhzCtra1FUVFRixCtQCCAP/zhDygsLMRHH30Uj+HGjXhYdMXz9Xg8CTXwEE2QW78HwBiD2WxO2BNtXV0d/vOf/0jhAgqFAkuXLm0zzkYsSC92YYm35aCrXPxi/VIxljceN610QBAYqip8OHfSi4a6lmEiPA8UFSvRf5ASGVl0menJKJU8iktU6DtAifpaP86d9KKq0gd8dzny+5pc/vmFQZe/KT91XP4KhQKZmZlS0wxRoGZmZrawoMWKaGkMjUNNxHU6XhZT0SMlNkbRaDQAgtfbO++8Ey+//DI+++wz3HbbbfEaelwIBAKdegC4cOECgKbvQmt88MEHaGhoAM/zKCkpwcKFC6V2uERs0F2jGyPGmVqt1oQl5VgsFqxatUoSZTzPY/HixW0KU47jkJ2dDY7jUF9fn7AY2EQLVNEq6/f70dDQkFIlYhIFExgqLvpw8og7Yl1SlZpDv4EqFJcooVKTY4ZoguM4mPIUMOUp4LQHcO60FxfPesMS5aorg21qM7NlGDxSjbyC1BCpSqUyTKAKgoCamhpkZmZCoVB0ev8cx4HneSkGNZ4CNTSjvrMubo7jkJeXh4qKClRVVaF///7SMpPJhPz8fBw4cAAymSyiCL7pppuwY8eOmI7573//G9OmTevwmAFI/7OOlpf6f//v/wEINmZoK6TjlVdeCZt+9tln8cQTT+DJJ5/s0HF7MiROuzEcx8HtdiesG5HdbseqVaukMkkcx2HhwoXo06dPm9uJLTwtFgu8Xm9CxiaSKIGamZkJrVYLj8eT8OoHqQBjwSSnk0fcsFtbitLMbBkGDFahV29FUvrXE+mFVi/DiLEaDBmhxqXzXpw75YHd1vS9sjQEsHuLA1k5MgwZqU4JS2qoQPV6vfj000+TOp6O8MADD3Q6XragoCCiOAUAjUaD6upqyRrcXKDOnj07ZktiXl5ep8YrIlYXiPV79NVXX+H999+HQqHAz3/+84jrTJkyBXfeeScmTpyI/Px8qePYq6++ipdeegkGgwH3339/PE6jx0DitBsjCELC4h9dLhdWrVoVVij/qquuQklJSZvbGY1GqFQqOByOLqv9GU+BynEcsrKyoFarE55glgowFnTfnzzsgbWxmSWEA4r6KNB/sApZOXQpIWJHruDQb5AKxQOVqK3y4+xJD2qrmjwQ5voAdm52ICdXjsEj1TDlJfd7plQqkZGRgZqamqSOI5mIXrGqqqqw+S6XC1VVVTCZTJIlWLRYijzyyCNdOtbm+P3+mCzdJ0+exEMPPQTGGJ555hmMHDky4npPP/102HRJSQkee+wxjBkzBrfeeitefvll3H333VIYBNE+dEfphoSWjUpEKSOv14v//Oc/aGhokObNnDkTw4cPb3M7rVYLvV4Pj8cj1Q3sKuIhUHmeR3Z2NpRKJRwOR5efQ1fCGEN1pR8nj7gjFlkvKlZg8Ag19AYqA0V0Ho7jkNdLgbxeCljq/Th+2B0mUutr/dix0Q5TvhxDRqqRbUrerUulUiU8yTKVEcXp5cuXw+Z/9tlncLvdWLp0aUrVQG1OtOWlKisrcdttt8FiseDHP/5xhyyfc+bMwdixY1FWVoa9e/dixowZHRlyj4TEaTeE4zi4XC64XK6479vv9+Pzzz9HdXW1NG/SpEkYN25cm9uJFgexv3wy6IxAlclkyMnJgVwuh81mg81mS+RQkwZjDLVVfpw47I5Yo7SwjwKDR6phMJIoJRJDZo4cU2bp0VAX/B7WVTeJ1LpqP+qq7cgtCIrUZFnsMzMzcccdd4RdY9VqNQwGQ9zCD3iel5KYYjEytLVdZxO4AKBXr14Awi2nFosFL774IuRyOR544AEACKvnKsbj//GPf8Tp06djOt4jjzzSZp3sWBFjT9v6P9XX1+Pmm2/GpUuXcPvtt+PXv/51h483YMAAlJWVhd0zifYhcdoNEQQhIVY9QRCwbt06XLp0SZo3ZswYTJ48uc3tZDIZsrKypIz2ZBam74hAlcvlyMnJAc/zsFgs3bYVqa0xgMP7XKiraZnYVVCkwJCRaiqYT3QZ2SY5ps7Wo67GjxOHXWiobXpYqq3yo7bKjsI+Cgwfq+nyzmIcxyEnJyesrJSYCR+pQ1BHCW15Gk3CZVfUTm1uOWWM4Sc/+Qlqa2vx5JNPYsiQIdK6Ypa8WKR/06ZNMSdE3XLLLXEVp0Db7n273Y7bb78dp06dwqJFi/DKK6906oFDDK2L5/eiJ0DitBuRSHc+YwxfffUVzp49K80bMmQIrrzyyjZ/uGJmvkwmS5mM9lgEqlKplCoLmM1muN3urhxql+DzMpw44sb5U54WPe/zC4MtKjOz6VJBJAdTnhw5c74TqYfcMNc3ia7Kch+qL/swaJgaA4aoIOvCZDyO42A0GmGxWKRqKHa7HTKZrFNtTkMRr+Niqam2rp9dVdS/uTh98cUX8dVXX2Hp0qV4/PHHw9ZljEludJlMho8//jhh44qVSO59j8eD733veygrK8OcOXPw17/+NeoOU5Goq6vDzp07AQCjR4/u1Hh7GlTrpRuRKHc+YwxbtmzB8ePHpXn9+/fHvHnz2n2iFEutWK3WlBJ20RTqV6lUyMnJARB086TS+OMBYwzl5zzYuNaKcyfDhakpX44Z8/SYNFNPwpRIOhzHITdfgelX6TH5Sh0yspoEQ8APHD/kxuZ1NlRXJqZkXmvwPI+MjIwwAWO1WuNahUQQBPj9fnAc12qtzq7sNhWaEPX666/jj3/8I+bPn4/ly5dHvB+I4QViuEGq8Mgjj2DatGlYs2YNgKBYfeCBB7B161ZMmTIFb7/9dlRhEHv27MHWrVtbxNVevHgR99xzD5xOJxYsWIDCwsKEnEd3he463YhEufNLS0tx4MABabqoqAgLFy5s94lSr9dDo9HA5XJ1aY/7aGnLgqpSqcKaBCSqTmyysDT4cXifK8wKBQBaHY8R4zTIL0x+6R6CaI6YOJVbIEf5OS+OHXTD6wmKAoddwO5vHcgvVGDEWDV0XZSsJ3aRMpvNEARBKtKflZUVt85PoltfdJGH1kLt6jaooZbTl156CVdddRX++te/tpkFn+gEqa+++gqvvfZa2Dyv14vFixdL04899hjmzZsnTVdWVuL06dNS/sCbb76JL774AkCw3GFrZaOeffZZyWgBAKdPn8ajjz6K/Px8lJSUIC8vD5WVlTh48CDcbjeGDh2KP/zhD/E61R4DidNuQCLd+adPn5bcEkCw5tzixYvbvegqlUoYDAb4fL6UbucZSaD6/f6wtqqpEIoQLzxuAccPuXHxbLhlRyYDBg5To2Ro17pGCaIjcByHvgOCdXVPHHbj3Gmv1HGqutKH2iofBgxRYdBwNeTyxH+f5XI5MjIywor0WywWZGdnx81aGCpQxRqioclPXSFMgWAtU7He63XXXYfXX389qvJMkRKk4kV9fT32798fNo8xFjavvr4+4rbiPTP0PiWK1Ej89Kc/DROn48ePxz333IN9+/bh5MmT2L17N7RaLUaMGIHrrrsO99xzD5WQ6gAcS6UaD0SHSUTNzfr6eqxYsUKyGmZmZuKmm26CVqttczue55GbmwuO41BXV5cW4o7jOKk1n3hz6U7ClDGGC6e9OH7YDZ83/Cffq3cwqUSrSx2XW3ciNzcXQLAvOZEYrJYADu1zhiVNAYBGy2P4WDUK+8SepS56TXJycqL2Irjd7jDvlUqlQkZGRly9EM3d+10pTDuLOPZoE7y6is52zooXjDHU1tZi+PDhKTGeZEKW025AIBCIuzvf7XZj9erVkjBVKpVYsmRJu8IUCIpYmUwGs9mcUhegtmCMwWazISsrS4rdTZext4fTHkDZbhfqa8PPx2DkMWK8Brn5nW+/SBDJxJgpw7Q5elSW+3C0zAW3K/gA5nIK2Lvdict9fBh5hQYqVWIfwNRqNfx+v9SVz+PxwOl0xjVTu3krzmRWP4mV0AQp0eKbCsRanJ9IPCRO05hEufPFklGh3Z+uueYaZGVltbutTqeDWq2G0+lMSJ3VRKFSqSRXviAI0Ov1EAQhJWNlo4UxhotnvThS5kbA32QtlSs4DB6hQv9BKvB8z346J7oPHMehqK8S+b0UOHXMjTMnPGDfXRYry32or/Vj9AQtCooSK0J0Oh38fr9UYsput0OhUMSlxijQFGMaGnMaGoOa6giCkJIF+qMtzk90DeTHS2M4joPb7Y57Fvn27dtx8eJFaXrq1KkteihHQqFQwGg0wufzpVX3JDH5SXTlt5fFnw64nAJ2bXHg4B5XmDDt1UeBOQsNKBmiJmFKdEvkCg7DRmswe4EB2blNYsPjZijd6kDZLmeL0JZ4IpaYChU6jY2NcXG9h1oc/X5/WKJROiGK6VQat5jMRqQGZDlNY8Ss0Hhy4sQJ7Nu3T5oeOHAgJkyY0O52Ys95ADCbzWnzIxfrmDaPMe1sq9NkwRjDpQs+HNnngs/X9D9QKDmMukKDor7xsd4QqYvTF4DTJ8AXYPD4BfgEBq+fwSsweP0CvAEGb0CAXwAUMg4qOQeVjIdazgffy3moZNx30zyUMg58Gsa/6Q1BV//Zkx4cP+iG6FwqP+9FXY0fYyZqkFuQGCuqWGJKvBaKlVTEsKGOECkrv3kWfzqFIjUv0J8KiGMikg/9F9IYu90e10D4mpoafPXVV9J0Tk5OVLVMgWCcqVwuh8ViSZkLTXsoFIqwclGh4+5Mq9Nk4XELOLjXhapL4WWv8nrJMWaiFmoNOUrSGcYYbJ4A6px+1Dv9qHf5UO/0o87pR4PTF/zr8sPpi28cn4wDcrRymLQK5OoUMGnlyNU1vTfpFNAp2m4HmSw4jkPJEDXyeilQtsspteR1OQXs3OxAv4FKDBujSUhGv0KhgMFgkMKjfD4f7HY7DAZDzPtqq1xUugrUVIw/bR7PSyQPEqdpit/vj6tYcjqdWLNmjXThU6vVWLx4cVRxUlqtFhqNBk6nM21ae8pkMqnzU2tZ+ekkUC9f8uLgHpdU8xEA5HIOI8ap0ae/MiWFA9E6vgDDJasH580enLd4cM7sxnmzB42ers/KDjCgxuFHjcMP1EaOI9fIeRQYFOifpcaALBUGZKvRP0sFrSI13LYGowzTr9LjzHEPThxxS7Go5097UVvlx5hJWuTkxv92qFar4fP5pPh7p9MJhUIRUwepaOqYpqtAFYVgKsWfiqESdM1MLiRO0wwxCcpqtcbthxwIBLB27VqpGDHHcViwYAEyMjLa3VahUCAjIwN+vz9t4kx5nkdOTg54nofZbG6zm0uqC9RAgOHIfhcunAk/B1OeHGMmaak8VBrgFxhO1btwos6Fc+agIL1k9cDfSUMSB0Ap46CU81DyHJRyDkqeD/6VcZDxHPwBBrdfgOe7v16/ALefwSfEdm1x+QWcM3twzuzBNyHzexkUGJClxoDsJtGaqU7ObYfnOQwaLlpRHbA2Bj9gh13A9o12DB2pxsBhqriXfdLr9fD5fJJgtFqtkohsj1gK7IdaItNJoCay/mlHEQQhpeJheyIkTtOMRCRBffvtt6ioqJCmp0+fjr59+0Y1lnSLM+U4DtnZ2VIIQjSfY6oKVKdDwN7tDslVCQSL6Q8bo0G/gWQtTVUExnDB4sHBKicOVDlwpMYFdwxKVCnjYNLKkaNVIEcjR474Xtv03qCUQc6jw9+BgMDgCQjw+hms3gDqHMGwgdrv/ganfah1+NsUspdtPly2+bDtok2al69XYGyBDmN7aTE6Xwe9qmtFQEaWDDPmG3DyiBunj3uCxftZsAWqud6PcZO1UCjj91Anxp82NDRI1kEx/rQt93FHOj+JrnGxl3261D8VYz1TZcyiRZeuocmDivCnGYwx1NTUxO0HfOTIEXz99dfS9JAhQ3D11VdH9aMUs9kbGxulun6pTk5ODlQqFaxWa8wCM7RQf0e2jyc1VT7s3+kMc+NnZsswbooW+i5q29jTEN2P4t/Q92KnHvF3E/qXMYZLjW6UXmhA6QUz9pZbYHG13w5XxgF9M9UozlShX6YS/bPU6JepQoZaljI3TcYYGj0B1Dp8KG/04myDG2fNbpwze6KKfeU5oCRbjbEFOozrpcNgkwaKLuxQZq73Y98OJ5yOprFq9TwmTNMiI0uO+vp6qW5zZ2leoF+j0UgPu83pbEvSrm5pGg/EMQcCgZSIP23e7KAr8Pv9sFgsGDZsWJceNxUhcZpm2Gw2yf3eWS5fvoxPPvlEuhDk5eXhpptuiuoHqVQqkZOTA5/Ph7q6uriMJ9FkZWVBo9HA4XB0OAQh2QKVMYZTRz04cTjc4ltcosSIcRpqPdoJeJ6HQqGAQqGQxGck4dkc0Z3avBTN2XoHvjlZh42n63HB3HbNX4WMw8heRgwrMGJwrh6D8vTon6ODQsZLxxCFhvg3EAjA5/PB6/WmnNdCYAzVdt93YtUjiVaLu22hpJZzGJmnxdheOkzqrUe+PvHVJbxeAft3OlFzucmlzMuA0VdokWnygOf5uBXRt9vtYQ/yGRkZLeJP4yUsU03sRYN470kV9774GXYVNpsNKpUKRUVFXXbMVIXEaRrh9/tRW1sblxuRy+XCBx98IF0oNRoNbrvttqgySTmOQ25uLmQyWVytuIkkIyMDOp0uLm1ekyVQvV4BZbtcqK5ssrqJN9E+/alEVCzwPA+lUimJUVGQhhIqOkUx2Fwgik0bRCqtXmy9YMXWCzZcaPS0fvzvLIaj87UYXaDDsFwNVHK+hXW2tb/NhbLf74fP5wt7paIgqXP6cLDKif2XHThQ5UBjO2J1WK4GV/YzYnpfAzISGKvKGMOpYx6cOBT+0Nd/kAwFfb3QaNRQqVSdtqAyxmA2m6XOezzPIzs7W9pvvC2eYlvOdBGoorUylSy+XdHaNBAIwOVywev1on///lCpVAk9XjpA4jQNEJOgGhoa4hJryhjDF198gTNnzgAIXiBvuOGGqJ/W0s2dr9PpkJGRAY/Hg/r6+rjss6sFaqPZjz3bIrkfdcjIIjd+W7QnRBljLYSd3++P+iGw2u7Ftgs2fHvBirPm1gVp3wwlRhXoMCZfixH5WuiVHf+/8TwPuVwedk7Nb6KpLljF2Nuyyw6UXXbgaK0L3kDkz5zngHG9dLiynxGTexugUSTGmlVb5cO+HU54Q4r0mwo4DBnJgcEXF8NAIBCA0+mU9iWXy6HRaCQLvWgljxei1T9VxF57cBwnCfRUkCfieBIJz/MwGo0wmUwkTL+DxGma4Ha70dDQEJd9HTt2DBs2bJCmZ8yYgfHjx0e1rejO93q9cRN6iUTs/uT3+1FXVxfXi11XCdSLZz04tNeF0PtVfqE87okb3QWO46BWq6FWq6FUKtsVoqIVKxYExrCv0oE1J8zYd7n1B7SSbBWuGd4LVw3Khdwbn3Cc1hCtTqFCPJJg9Xq9cLvd8Hg8TeV73C7AbgXsNsBuBXM5ALGcDscDHBfy4oNqkeMApRowZgIZWYBa0ykLk8cv4FitCweqHNh1yY4Ka+QqGkoZh8m99biynxHjeunjHqMaKdFQoeQwfooWuQXxsd4ePHgQW7ZskaaXLFmCqVOnxvU6LyKTyWAymcBxHOrq6lLGZd4aomeO53nU1tamhKjOzc2FQpG4trepEkOeSpA4TQPimQRltVrxwQcfSOWTevfujRtuuCGqH0e6ufPlcjlMJhMAJOwil0iByhjD8UNunD4WYo3jgKGj1Bg4NL4lb9IdmUwWJkjFRKRQAer1ejt9Y7Z7Avj6bCO+OGlGlT2yqC3OVGFGsQEz+hpRaFQiNzcXQPA72NVwHAeZywG+uhJ8dQXY5XIwcx0EayMCVguERgsEWyMQiINgUSiDQvW7F5eR9d37LHB5vYCiYiAjug5JjDGcNXuw5bwVW85b0eCKPD6DSoarSzJw7ZAsmLTxEw+BAMPRMhfOnw4RyBwwarwG/QZ23rLFGMOqVatQXl4OIPgQ/eCDDybMsi0aFQKBAOrq6lLKgh4JpVIJk8kUV29XZ1CpVMjJyZG8mETiIXGaBnQmgScUxhhWrlwplY1SKpW48847o+5Ykk7u/FAhXV9f32Yt03gcK94CVQgwlJU6UXGhSQApVRzGT9UiNz9xT/DphFKphFodjAUUrRqCIMDj8UiWwXjdhM+b3fjipAWbzjXCE8H1XGhQ4sp+BswoNqJPRrh46SpxyhrNQMUFsMvlQGU5WFXwL+zWhB43JvQGoLAYXFEx0LsYXFE/oKgvOLW21U0CAsPRWic2n7Nie7kNDm/L/6mMA6b3NWLJ0CwMNmniNtxL5704uMeJ0OfagcNUGDpK3WmRYrPZ8MEHH8DjCT58xmIo6AharRaZmZkpI/jaQ8wTsFgsKdHcRaz0QnQNJE5THEEQUFNTE5eb7L59+7B161Zp+uqrr8bQoUOj2jbVnmTbIzs7G2q1usuEdDwFqs8rYM82J+pqmqxFhgwZJl+pg0bbc934HMdBpVJJglR01wcCAan2r3ijjwfsO9f9yqP1OFzTMtue54BJvfVYNDgLo/K1rYqKRIlTZmkAO3EIOHEI7MRhoKay0/vk9UbwxkxwOj0ExsACAQiBAMAEgLHgSxCa/npcgLURUsuljpKTB/TuB27QCHDDRgO9+4OLEOfnCwjYV+nA5vNWlFbYI8aoDjVpcN3QLEzpY4CM77zQazQHsPtbB9yupnPsXazAmIla8J0IKcjIyMDx48fx73//W5o3a9YsjBkzplPjbQvRwBAvg0ciSTX3vkKhQG5uLllPuwgSpylOvEpH1dXV4aOPPpJE7sCBA7Fw4cKY3PmpcpFoj2RdgOMhUF1OAbu2OGBrbPqMTXlyTJiug0LZMy+IKpUKOp0OKlVTKIPP55MEaUdiRtuCMYaD1U68f6AOJ+pailLRlbxwcBZyde1bseMlTlmj+Tsxehjs5CGgqqL9jUR0BqBXH3C9egO5BYDeCE5vBKSXAdDqodJopPAIsayPIAhwu91wOp0RPRBMCARjVa0WwGoBs5ql92i0gDU2BC24jTHEUuoNwJBR4IaNDYrV3F4trlV2bwBfnbFgzQlzsLVqM0xaORYNycLVJZmdLvQf/F3aYWtsEqimfDkmTOvY7zK0esg///lPKTlVJpPhjjvukJqbJALRApgqFsm2SDWjiFiOkEg8JE5TGEEQUF1d3ekkHr/fjxUrVkj1SHU6He64446of2Tp5M7XaDTIyspK2sWsMwLVaglg15ZwC01RsQJjO2mhSUdkMhm0Wi20Wq3UdzvUXZ+oB6QjNU58cKA2oqW0JFuNxUOyMKPYAKUsegt2Z8Qpq6oAK/0WbM9WoPJi+xtkZH0nQvsE/xYG/8KQEbO1Ry6Xh8XxAsFricPhgMvlitmbw2xWoOI8WMWFYPjBpfPBc/JEUYEkOzcoUoeOATd8DDhjk3gLCAw7L9mw+rgZx2pb/t/Ucg7XDMzETSNyYOxEOSqfV0DpNifqQzwaxkwZJs2MzaMhClMx+cnpdOL999+HyxUce35+Pm6++eaEZYh3ZchTPEgl975MJkNeXh5ZTrsAEqcpTLzE4LZt27B3715peunSpSguLo5qW7lcjtzc3LQotq9QKGAymZIe9N8RgVpb7cOebU74fU0/x3jFtqUTarUaWq1WspL6/X44nU44nc6E/j9P1LnwwYFalFW1vPmN76XDLaNyMNTUsWz0WMUpq68F2/Mt2O5vgYtn2l45Jw/ckFHAkJHgBo8EZ8qPeXzRIJfLodVqodFopIcF0ZramVAKJghAfU1QtJ47BXbsAHD+dNthAhwHDB4JbvIscOOngdPppUWn6l1YfdyMrResaO7x18h5XD88G9cNzYJW0TFLaiDAcGC3ExUXm6z1Gi2PSTN1MGa2v8/mwlTkzJkzWLNmjTQ9depUTJw4sUNjjAYxWVRszZzK3jCO4yRBGK8Qt84g/g+JxELiNEUJBAKorq7u9H4qKirwySefSNOjR4/G7Nmzo94+JycHSqUSdXV1cXefxhOe55Gbm5sy5VJiEajl5704UOpsuh/HMSs4HeB5HlqtFjqdLq7CJxouNXrwzv4alFa0fAgcna/FHaNNGJbXerJONEQjTpnVDLZ3O9juLcDpY63vLNv0nRgdBW7IqISJ0bZQq9VSmAUQDLEQranxuJ0wpx04eRjs2MGgWL1c3vrKMjkw6gpwk2aBGz0R3Hdjqnf68MVJC9afMsPWLIEqQyXDzSNzsGBQptSBK6bxRaiioVBwmDBdC1MbyYqtCVORDRs24Nix4P9eJpPhrrvuQkZGRszji5bQMnvJqCQRC2q1GtnZ2SkRK8vzPPLy8rq0c1RPhMRpiiEGW5vNZsnN01E8Hg8++OADKWY1MzMTt99+e9T12kQXeSpcENpDTICKx+cWL6IRqGdPenBkf9N4ZTLgimk65Bd2/4x8uVwOnU4HrVYrFQl3OBwJt5ICgNsvYMWhOnx2vAH+ZocalqvBHaNNGF0QH+tIa+KUMQacOgJhw2fAgdLWrYW9+4GbdCW4K6ZFjL1MFjKZTPr/iUXTnU4nHA5HXC1xUuLXsQNgx8qAhlY8OCoNuHFTwE2+Ehg2FpxMBo9fwJqTZnxypB72ZiI1T6fAHaNNuLKfsUOJU+dPeXBovwv47g7K8cCEaToUFLX87bYnTIHg9fq9996TXNf9+vXDddddF/O4YkGv18NoNKbFNV6Mla2trU26ocRgMERd5YboGCROUxCfzxeXJ9nQJ3GO43DLLbcgPz86S4voSgGAmpqalOjU0RqpfIFtS6A2F6ZKFYdJM3XIyklcm8ZUQKVSQa/XS5Y3r9cLu90el+5n7cEYw85Ldry5pxq1znDr+qAcNe4YbcK4Xrq4CsDm4pT5/WB7t4Ft+Ay4cDryRnm9goJ04kxwhX3jNpZEwHEcNBoNdDodFAqFZPm22+0JSVbD2RNgu7eAlX4L2Fr5vRsywE2dA27uEnA5ubB7A/j0aANWH29oUQqsOEOFO8eaMKlIH/P/varCh307HFKpKY4DJkwPF6jRCFOR48eP48svv5SmFy9ejAEDBsQ0plgRRV+8OhAmilQKMeM4Dvn5+WQ9TSAkTlOIeLYpPX36NL744gtpevLkyZg8eXLU24tJUKkQhN4WYnHpRHSAiheRBGpzYarV8ZgyWwedvvu2IlUoFDAajVCpVGCMweVyweFwdJkV5LLNi/+3pxp7K8Nd+LlaOX5wRT6m9IldnESDKE5rLpwD+3YD2DerI1v/skxBMTppJtC3JGUspLEgVlZQq9UAAJfLBavVmpCYRhYIAMcPgu3aDLZ/R7DLVXN4HtwV08HNXwqu/2CYXX6sOFyH9acsLWJSh+dq8OCkAvTNjC2cxlznx65vHfB91/I0VKDGIkyBlrWoDQYD7rrrroR2JwoNiUr1aiyixTIV7ktiW2wiMZA4TTG8Xm+nnwodDgfef/99SeDGmv2ZSk+obREaKJ8KcaZtESpQS3dUYN/OJouPVsdj6hwdtLruKUxlMhmMRiM0Go0kSm02W5fdBD1+ASuP1uOTIw3wCU2XOzkPXD8sBzePzIFanjgLSDYCcHz2IZwbVgfrgjZn6GjwV18PjBgfsbZnOiKXy2E0GqFWq8EYg9PphM1mS1i4BvN6gEN7IOzaDBzaA0S6FgwcDn7+UmDsJFQ5AvjwYB22nLci9AYo54Ebhwe/E7FUZLA0+LFzkwM+X5NAvXJ+LoaOyI25JWl9fT0+/PBD6bOaMGECpk2bFvX2HUHsgBSP+08iSbXkqPz8/LD2yET8IHGaIohW07q6uk6X9li/fj1OnDgBIHiTuP3222Oqm5cuSVCpGGfaFhzHobpCjl3fNoVsdGdhyvM8DAaDFFMqitKufIg40+DGK9sqcalZn/bRBVo8MCEfvTMSl3TGnA6wL/4N9s3ngK/Zb1omBzdpJrh5S8H1TazbNpkolUoYjUYolUoIggCHwwG73Z5QDwdz2sF2bAT76j9AXYSk0twCcFddB276VTjv4vBeWW0La3qhQYEHJxXEFHfcXKDyPDDr6nzoM2JP6gutsMLzPO644w5kZ2fHvJ9YEK2SdrsdVmsKdRVrRiolR4ldt4j4Q+I0hYj1CTsSzbPzY+04ki5JUKJLxel0wmKxJHs4UdHcla/TyzBltrbbCVOO46DX66HXB93kHo8HNputS+spBgSGz4414P2DtWEJT1kaOX4wPg8zig0Jc5szvx9syzqw1R8Gi9OHotWDm70Q3JxrwWXmJOT4qYhKpYLRaIRCoYAgCLDZbAmvmcyEAFC2C8KXq4Azx1uuoNWBm7UA3DU3Yq+Fwxu7q1rEIV81IAP3jM+DMcoi/pYGP3ZtdsL7XfJVpBjUaPD5fHjvvfekGPU+ffrg+uuvT3iohxh/Wl9fn/BKGZ0hlZKj8vLypIYVRPwgcZoCxMtqKggCPvroI8ktk5ubi1tvvTVqd366JEGF1jOtra1N2XGG0lyY6g1yXHdzPzDO3alWp6mGKEp5nofP54PVau3ym1ytw4fXdlzG4eqmmDQOwOIhWbhjjKnDNS7bgzEWFEMfv9OilSifbQJbsAzctKvAqdQJOX46oNFoYDAYIJfLEQgEYLPZuiR2kJ05DvbVf8D2bm9ZFUGrA3ftLXDPXIgPjzXi8xNmhER/IEMlw31X5GFWP2O74jAjIwNOG4/PP7nQaYHavPbpggULMHjw4Jj2EStimSQAKeE2b41UCj0j62liIHGaIsQj1ufAgQPYvHmzNH3zzTejV69eUW+fDklQod1NamtrUzrOVCRS8tO0OXr07ZffqVanqYRWq4XBYIBMJoPf74fNZktKqMW35634S2kVHCFlg3K0cjw2tVfcSkNFgp07BeHjt4CTR8IXqNTQL/sedEtvR521822Iuws6nQ56vR4ymQw+nw82m61rqjXUVYN98znYt1+2TKDKyQN3/V04M3AS/ry7GmfN4Q9VY3vp8ODEfBQYlBH3HZr8dPZ0TYsY1FgFKmMM//nPf3DhwgUAwc/srrvukqpcJAox/jRVWoa2RiolR1HsafwhcZpkRKtpZ90oTqcT7733nrSPYcOGYf78+VFvL7ZlS4Un0bZIpVZ20XDxrAcHSsOFqRhj2plWp6mCQqFAZmYmFAoFAoEA7HZ7UlrcOn0B/K20GhvPhcfKTe9rwEOTCjrdW701mMcN9sm7YBvXhC/geHAz54O77g7kDQxau1K90HlXI4Z/6HQ68DwPj8cDi8XSJYlyzOUMitT1KwFXs+tI3wFgy+7F51xvfHCgLqz0lEbO46HJBbiynzFsk0hZ+S2SpHhg8pU65LZRqL85FosF77//vvSZjB07FldeeWVHTjkm0qFldSp5+ihzP/6QOE0B4lHX9Ouvv8aRI0GrjVKpxPe+9z1otdF3tsnMzIRWq41LQlaiSJcnepGayz7s/tYB8RcWKfkpnQWqwWCAXh9sHWm32xOe6NIaFVYvnt98CRUhSU8aOY/7J+ZjTv/2XbEdhZ0+BuHt14Cay+ELRl4B/qZ7wRUF65PG2r60pyEmzul0OgiCAKvV2mUPnsxmBVvzL7BNa4FAMy/MyPGoXfQ9/K1c0SJhan5JBn40IR8qOd9muShLgx87NzeVmZIrOEyfq4+q1anIrl27sGvXLgDBz+quu+5KuBs51ENVU1OTsuWlRJd6sq+dVPc0/pA4TQE6m21eVVWFFStWSNNXXnklxo4dG/X2YvyOx+PpdEJWohAvljzPp3wtPiB4U9q+0YGAP/jzUqk5zLhKD22EOqbpJlBDraU+nw9mszlp4RX7Ku34/dZKOHxNbvyhJg2emN4L+frI7tfOwnxesM/eB/tyFRB6+SzsC/7WH4AbPi5sfRKn0aFUKpGZmQm5XN6lVlQAYDWXwT59D2zP1vAFHAdMnYutU27FXw9Zw75nfTOU+M3CIRjRp+1yUeZ6P3ZstEuF+tUaHjPm6aHRRidk/H4//vnPf0oZ9IMGDcLChQtjP8kYEWtIp7o3TWwlmuwYWbEZDBEfSJwmGb/fj5qamg5vzxjDihUrUF0dLJmSk5OD22+/PaYnOLEkU01NTcrGcKaTO9/pCGDrV3Z43N9ZS+Qcps3VISOr9YzOdBGoza2lYmvcroYxhs+ON+Dd/bVhySu3jMzBbaNMHWpHGdVxL5yG8Oar4f3eOR7cghvBLbkdXIRi6SROo4fjOBiNxqRYUQGAnT0B4ZN3WsYO642ouflB/MFahFP1TbGxKjmPx2f1x5R8eZsW+qoKH0q3OaRWp4YMGabP1UOhjO572rxz1G233Sa5tBNJOrj3xdJSyS6BRdbT+ELiNMl0VmwdOXIEX3/9tTR94403onfv3lFvr1QqYTKZUrokUzq5870eAdu+ccBuDZpJOA6YNFOHvF7tx5mlskCVy+XIyspKCWupNyDgz7uqwuJLVTIOj03rhWl9E2O5YH4/2BcrwNasAEKtM/lF4O/9CbiSoa1uS+I0dpJqRWUMOFgK4ZN3wx9CAPjGTsUH4+7AZ+fCPV1X9jPiwUn5bVaCOH/ag0N7m7Yz5ckx+UodeFn7ApUxhg8//FCyYPbp0wc33HBDLKfVYfLy8lI+AVW8biY7BEEU80TnIYmfRAKBQKeEqdvtxrZt26TpwYMHxyRMgeCPiTGWNAtYe3Ach4yMDAiCkLLiWSQQYCjd5pSEKQCMnqCJSpgCwRuQ2PgglS5yBoMBubm5kMvlsNlsSb1J1Tt9+MWGi2HCNE8nx0vXFCdOmNqsEF57Bmz1R2HClLtqCfhfvtamMCU6htfrRW1tLRwOB1QqFXJzc2OKoe8MHMeBGzMJ/DOvg7vtR4CyKTteUbYD96z4H/y2xI0MdZMnZMt5K55cex5nG1qvONBvoAoDhzXtq67Gj7JSZ1Rx2hzHhXWJKi8vx8WLF2M9tQ5hNpsBIKXLJVmtVnAcB4PBkNRxJCvuvjtC4jSJdNYytnPnTqn8ikKhwPTp02PaXq1WQ6lUwul0pmwMp9FohFwuT1h/7njBGMP+XU401DaJtsEj1Og7ILayL6kkUMVYZIPBAL/fj9ra2qQ+xFy0ePDUugs4GeJWHZGnwe8X9EP/rMTUDmWXzkN44UngxKGmmTl54J96HvxtPwKX4LI+PRnGGBobG1FfXw9BEJCZmYmcnJwuK9nDyWTgr1oC/tn/A4aObhqXw4Yhb/4Kv6tcieEhoTqVNh9+uv4CNp5tvXnJ0FFqFBU3PaxWXPDh+KHoSmgVFxejqKhImt6+fXuXCCGfzweHwwGlUgmdLnHl2DqD1+uF2+2GRqNJakF8QRBSPuwsXSBxmiQ6+yWura3FoUNNN8yJEyfG/NRoMBikbi2piEqlgk6ng8fjSfkf/NEyNy6XN3Uq6dNficEjOiZcUkGg6vX6lLGWAsCpehf+Z8MFNLiaxrBgUCZ+PbdvmAUrnrD9OyG8+LOwFpjcpFngn30d3JBRCTkm0RKPx5M0KyoAcLkF4J94Dtr7nwSnaRJnpoNb8eu1v8TNRgtEx7xfYHhtx2V8dLAuonDkOA5jJ2phymv6zp4+5sH50+2XEeQ4LswAUVNTg1OnTnX8xGLAarVK16NU7YZks9mkmOVkQtbT+EAxp0nCZrN1WBQyxvDxxx/j8uVgCZvMzEzccccdMV00xDalnRlHIkmn7Pxzpzw4vK8pliy3QI5JM3XgO5mUk4wYVI7jkJ2dDZVKBZ/PB4vFkvT2gIeqHfjfTRVwf9eHlOeAH16Rj0VDshJyPMYY2JoVYJ+93zST48At+z64q2+IuTQVxZzGD5VKhczMTMhksi6NkxcTMh2XLqDh/14ADu8NW35wzNV4NX8+Gr1Nt9M5/Y14eHIvKCLElPq8DNu+scPW+N117bvY9PwoQoDWrFmDM2fOSOO66667usSaLHbmS+Xs/aysLGg0mqhLIpaXl+PEiRO4ePEiLly4gMbGRsjlcvz+97+Pyzi2b9+O1157DWPGjMEvfvGLTu2zp0GW0yQgCEKnMh9PnDghCVMAmDVrVsxPs0ajUSqanoro9XrJapfKwrShzh/W/SkjS4YJ0zovTIGut6CKbnyVSgWHw5ESfav3VNjxm42XJGEq54GnphcmTph63GB/+124MNVowf/XL8Ffc2PCe5sTbePxeFBTUwO32w2tVguTyZTw7OjQOqaNvAL8o78Cd+9PAG2TFXX0gS/x27I/oygkumTjOSue3VgOu6fl9Uuh5DD5Sh3Umu/GzoD9O51w2tu/1k2dOlX6HjY2Nkr1rRNNqHtfo9F0yTFjxWq1gjEWtfV0/fr1+Pzzz3Hw4EE0NrYejhErosFn8uTJyMnJidt+exIkTpOAy+XqcD22QCCA7du3S9MlJSUoLi6OaR86nQ4ymSxl3Q8ymQx6vV66GKYqHreAvdubiuyrNRwmzdRBroifgOkqgapSqWAymSCTyWCxWOJ6oe4o35634oXNl+D9rkOPUsbhf67sjenFCUp8slsh/O5/wmtd5vUC/9+/AzdqQkKOScQOYwwNDQ2w2WxQKpXIzc2FIkIJr3gQqcA+x3Hgp10F/td/AsZOltYtqDmHFzY+hxHKpofVw9VO/PzLC6i2t7TiabQ8Jl+pg2j09HkZ9mx3IhBo+5qcnZ2N4cOHS9O7d+/ussYporHAaExcc4vOICYZK5XKqNq89uvXD9dccw1+9KMf4bnnnovbOLZu3YojR45AJpNh3rx5cdtvT4LEaRciCsHOCK6jR49K1k6e5zFjxoyY96HX6xEIBFJW+GVkZIDjuJQQSK0hCAz7djjhdjX1zr5iWoglJI4kWqDq9XpkZ2eDMYb6+vqUiO/98rQFf9hWCfE+rZHzeHZOH1xRlBhxzmxWCH/4JXDhdNPM4WPB/88fwPXqk5BjEp3DZrPBbDaD53mYTKa4W/Pa6vwEAFxmNviH/gfcbfdDVJgGjw2/2vAbzPZfkta7ZPXip+su4ERdy0YrxkwZxkxsip9tNAdweG/7DVkmT54sufKdTicOHDgQ8/l1BMYYrFYrZDJZ0jPjW8Nms4ExFtX45s2bh4ULF2LEiBFxOx+bzYb//Oc/0v9k3rx5XZbE150gcdqFcBwHj8fT4cQSv9+P0tJSaXrEiBEx9/PVarWS1TQVUavVUKvVcDqdKdtGFQBOHHKjrqbp/zhirAbZpsQlCiRKoGZmZsJoNMLv96dM69pvzjbiT7uqxHrlMKhkeG5eH4zIT0wSDLNaIPzhF8Clc9I8bs4i8I8+A06XGuW8iMi4XC7U1dVBEARkZWXFTWC0J0xFOI4Df9Vi8E+9AGRmAwAULID/2vo6bqnfLa3X6Ang//vqIrZfbFkkvqhYif6DmrqZXTznxcWzbSdI6fX6sC6AZWVlXRaC43K54PV6odPpUjI5Skw2ViqVUCoT0yWuLVauXAmfz4cRI0bA7XYjIyMjzNJNRAeJ0y6mM9bKY8eOhVlNJ0yI3dWo1+tTttyFmGkpdoZJVS5f8uL08aabR1FfBfoNSvxFMJ4CVbQ2abVa6QafCrG9uy7Z8H87m+KpszRyvDC/LwblJCbGjVnNEH7/C6DigjSPu+ZGcLffD46sHWmBz+dDbW0tvF4vDAYDsrOzO+VyjlaYhsINHAb+l68Cg0cGpwHcduhj/NeZTyH/7jHLG2B4+dtKrDtlbrH98DEaZOU0fd8O7XXB0tC2EWP8+PGSOHS5XDh69GhUY40HYiJarMaRrkIMWevqSidHjx7F/v37MW/ePOTm5kq5IR25V/d0SJx2IYFAQKpLGiuRrKaxWgnUajXkcjkcDkdKxpqGJkEls0dyW9htAZTtbnK76Y08Rk/Qdln8VTwEqkKhQG5uLpRKpeQaTYXvw6FqB373baXUjjRDLcML8/qib0ZiaokySwOE3/0irAsQd+3Nwaz8FIynI1pHEATU1dXB6XRCrVZL8dOx0hFhKsIZs8A/8Ry4a5o6N80p34Fflf0VOgSFJgPwl93VWH/KErYtL+NwxTQdlCruu/MB9m53wutp/Tqo0WgwcuRIaXrfvn1d9oDp9/vhdDqhUqlSMjkqEAjA5XJBrVYnLB65OR6PB//+97+Rl5eHq666CgBw+fJl+Hw+FBYWdskYuhMkTruQeMaaduRJTKxrmoqxpumQBOX3M+zd5oTfF1RPcjkwYXp8E6CioTMCVaPRwGQygeM4KakkFThd78bzmyrg+06ZahXBGNNCY2Is0sxcH7SYVjXFBnKLbwN3/V1RCVOO4yCXy6XMZZ1OB6PRiMzMTGRnZyMnJwc5OTmSSJLL5TCZTDCZTNKy7OxsKaxCp9NJTTFkMhmJ4w4iJvOJlSdicet2RpiKcDIZ+JvuBf/jpwF1ULSNtJzFb3e/hhyhyVv1591VLQSqRsvjiqlaiEVTnQ4B+3e13UFq3LhxUrUCm82GkydPdmjcHUFsjJKqyVHi/bKrrKdffPEFzGYzbr75Zsmi7fP5whKYiehJvYCRbgpjrMOudL/fjz179kjTHbGaqlQqKBQK2O32lLRKpnoSFGMMh/Y4YW1sskyMmaSFwZgc168oUE0mk1Q2pb04YoPBAIPBgEAggIaGhqSXiRK51OjBrzeWw/VduSiljMMvZ/fGgOwEdX1y2iG8+iugukKax113B/glt4Wtx3EcFAqF9JLJZJDJZOB5vs3yReLvSxQV4o2b53npfei8tvYjCAICgQD8fj98Pp/0IlrH4XDA7/cjKysLOTk5aGxsbPfaGw9hGgp3xTTwRX0h/Pm3wOVy9HbW4Del/4dfTngEDbJgCao/764CxwFXD8yUtjPlKzB0lBrHDwY9bDWX/Th11IPBIyL/FgwGA4YMGYJjx44BAP5/9t47Xo6rPht/zrTdne17994rXfVqSVaxLWxsjFzAGEuGmGICBkJLIYQaQkh+EJzk5bWTN3EwCcFAEkIogUCwjbGpNhgjjKskW9XquipXt+/e7bNTzu+P1ZnZvXX7HEn7fD766M7s7MzZmTPnPOf5th07dmDNmjVtIYssOIr5+vLmimUYBgqFArxeL0RRbKmqfPLkSWzfvh1XXnklVq1aVfHZz372M1x//fWglHJJ4nlFh5y2CYVCoW5S2AzVNBAIgFLKZSCUx+PhPgjq1PEiTvc7pGD5ag/6FrXf2b4ctRBUNvkWi0WMj49zs0AZyer461+eQupcLkiRAH+xZQHW9bQo+Mk0YX3lHypN+W94J8TXvbWCiMqyDEmSKiYT0zRhWRaKxaJNGtm+8v8nY7Yk/IQQCIJgk97y/9nfsixXpMWhlMIwDBSLxQ5hnQGapmF0dNRWpwVBmPPdaBYxZSDzFkL41D2w/u0fgT3PY35+DJ99/l/xmc0fxLhUUvO++MwggEqCunKNB4lRA0MDJVeAg3sLiHWLiPdMb57evHmzTU7Hx8dx/PhxLF++vGm/Yzbk83n4/X74/X7kcjlXq8hNh0wmA6/Xi2Aw2LKCDaZp4rvf/S68Xi9uu+22KZ8fOXIEZ8+exfz581ty/QsVHXLaYrDVUr2m6mb4mrKcb7lcjhtSUo5QKGSvwnlELmth3wuOr3CsW8LaTa1R9WpFNQQ1EolAVdWmT76NQjMs3P3EaYzmShMaAfCxV/ThZa1KF0Up6P/8G7D/BXuf702/h/C7/mQKEWWqi67rNglshV8updQmubOBkVRZlqEoCmRZrqhzXk5YC4UCNG3ucpgXOlgGiq6urhnfjVYRUwbi9UH4k0+Bfv0LoE8/XiKoO76Iz1zxJxiXS+P4ZIJKCMHlL1ex/dEMspnSeP3is3lc/1ppWheiWCyG5cuX49ixYwCA559/HsuWLWubSjcxMYHu7m4Eg0EkElODvdxEsViEpmnw+XxIpVItmf+SySTOnDmDUCiEr33taxWf5fOl+ISf//znePe7342xsbFOUv4q0fE5bTEIIfakUQ/27dtnE9tGVVNe/AvL4fP5uHY3oJTixWcdP1NZIbjiarUpFaCahdl8UKPRKJfElFKKf316EMcSDon6oyt7cd3S1tXFJr/6MeivfmJv+7a8Bl3v/TAIISgUCkilUhgdHcXZs2cxPDyMRCKBTCaDYrHoesCYZVnQNA2ZTAbj4+MYGhrC4OAgxsbGkEqlUCgUIAgC/H4/urq6MG/ePLuEYqsrKPEMFihVLBYRCoUqFvatJqYMRJJA3vtRkJtKqtr8/Bj+z84vIVZ0xuMvPjOIR48k7W1ZEXDFNSpImf/pvhdmzn9aPi8MDg5iYGCguT9iFui6jnw+b4/lvCGTyYAQ0nLf01QqhaNHj1b8Y8/hF7/4BfL5fIeY1oCOctoGNKKalvuarl+/vmbVVJIkeL1e5PN5LlIFTQYL0uLR3QAAThwpVuQzXX+5Dz6Vv8l+OgVVlmX4fD7k83nuFI0H94/j1/2OUv76S6LYtrr5JUllWYbX6wXZtwuJ//l3e7+0ai3E930MQ8PDXC6KqgEjrOUqqSiKdq5gr9cLn88HSil0XUehUEChUODO9NpqsOISXV1dCAaDIISAENIWYspABAH43fcBoTDoA99AX34U/2fXl3Dn5X+McaX0vn7xmZIP6k0rIgCASEzCqnUeHNpXer4njxUxf6GMnvlTCeC8efOwcOFCnD5dCvB7/vnnsWDBgpb/LoZ0Og2v14tQKISxsbG2XbcaaJoGXdehqmpLRJCuri58/vOfn/azw4cP44tf/CKWLl163o4zboG/WfYCA6XUlvZrxWTVdPPmzTWfg60WeSR/LIkzr2VUM2kTB150nt28hTIWLOFPGWCYrKD6fD7kcjnuiOmOMxl84wXH/3Jjr4r3XtHTtPPLsoxwOIze3l50d3fDMzaE5D1/VcrPAwCxOKz3/yXyhnnBTRis8tvY2BgGBweRSCRQKBQgSRJCoRB6enrQ09ODUCh0UVWtYQRV0zQEAoG2ElMGQgiErbeDvOtDABHOEdQvI1osLdIogH99ehDPnnYU1VXrvAhFnOf04nN5FIvT99ny+aG/v39aH+dWoTy1VDVlQ9uNdDptWxYawfbt23H33Xfj4Ycfrvm7bC7nca7jER3ltMWoNxCqGaqpIAjw+Xz2ypEnMDMLr2VUqUXxwjM5MLFZ8RBs3OzjPtqS+TAy8xpvKtmZVBH/9OSAXf2pNyDjz7csgNigmwQhxE7pxH67ruvIjo4g9TcfA82fi9b2eCF86DMg4eartLyBLYzZ4pgRB6/Xi0AggEAgAE3TkMvl6l5An09gfrmMPLn1bghbbgYNhGD92z+iLz+Kz+76Mj5z2R8j4QmBArjnNwP4u5uXYEXMC0Fg/qdpWBZQyFvYuzOPK66eSrIWL16M7u5um5Tu3LkTr33ta9v2u9LpNFRVRSgUqpoYnzp1CgcPHsTJkyfR399vpwG75557arp2LpfDgQMHsG/fPpw5cwaJRAKEEPT29mLz5s145StfiVAoBFVVK9zb9u3bh5///OcV5zJNE/fee6+9ffPNN+PSSy8FUBJ5hoeH64qPYO59blStOh/RUU5bjHrTRzXD11RV1YaCsVoJv98PURTtOsi84ehBDYkxxw1i48t88Hj5f12i0aid+aDZpU4bRU43cfcTp5HVS4s1j0jwqesWIOSpX8GTJMlWSSORCERRRDabxcjICEZGRpD66r2gI6WAExAC4Q8/AbJoWTN+znkHTdOQSqUwPDxsJ6xXFAXRaBTz5s274NXUch9TpqC6VR+eXH41hI/9DeD1oS8/ijt3/ztUoxR0qZkUn/3VaYxkS4JCKCLikvVOAOaZfh1nT0+NYSCEVKinhw8fbuuig+XQZu5E1eBnP/sZHnnkEezevbuhNIKPP/44vvnNb2LXrl1QFAWXXnopFi9ejIGBATz44IP44he/iFQqBVEUK9qWyWTQ399v/wNKi5jyfc20Ol4Mi8BmgVAemcEFAtM0MTQ0VPP3DMPA17/+dZtUbty4ETfccEPN5+nt7QWlFMPDwzV/t5UQBAE9PT2wLIu7tgFAKmnaSgUALFgiT6tU8AYWlc98TAkhiMfjkGUZqVTKddeOf3pyAL8+4SgOf7GlD69YXF8AlNfrhd/vt1WwYrGIbDaLQqFgL3bozqdgfenv7O+Q178Nwu+8vYFfUB9mSyXlNgghUFUVqqpClmVQSlEoFJDNZrlN61YPJgc/EULQ1dUFRVFcfTdo/1FY//RXQD6LF6Kr8H83vg8WKS0QlkY8+LubF0OVRVCL4slfZuwFs+IhuOGW4JQFs2ma+NrXvmaLItdee21d7mD1gqmV1Y7tjz32GHRdx+LFi7F48WJ85jOfqUs5feyxx6BpGq699lpEIhF7/8jICO677z4kEgnceuuteNe73gVd1zE6OlrrT2sKBEFAb28v9xY4HsC/FHQeo95SpUeOHLGJqSiKdammLPFwvcptKxEIBCAIApepoyyT4oVnczYx9foI1l/BX3m+yQiHwxXEFGhOqdNm4YnjExXE9C2XdtVFTFVVRU9PD2KxGBRFQS6Xw8jICEZHR5HP5x1iOpGA9c0vOl9cthrk1rc2/DsuNFBKbaV5dHQUmqbZ5T+7u7vh9fKRMq0RTBeVz3xQWRS/W+8GWbICwoc/AygKLkscxh8d+oH92Ymkhnt+MwDToiACwWUvV8GE7aJGsfv5/BSrkyiKtgkaAPbu3dtWyxTLpS1JElR17lzFN910E7Zu3VpXisTJ57n11lsriClQWhi+7nWvAwA89dRTtrXArawCLIixg7nRIactABsM6iWGu3fvtv++5JJL6ho4/X5/Q1WpWgXmlM7yMfKGIy9pmEiUVYG6UoWi8P2asPKXhUJhSvATDwR1KFPEl59zLAjrun24Y2O8pnN4vV709PQgEomAEIJ0Oo2hoSEkk8kp/tSUUlhf/wKQOUeGFQ+E9/0pyAVssm4GWIGG4eFhZDIZiKKIWCyGeDx+3vrJzZYuihFU9m5UQ6ZaAbJqHYQ//v8AUcTNZ5/BG07+yv5sx0AW//78ECilCARFrN3kLJQHz+gYODk1lmD9+vW2MjcxMYGTJ0+2/DeUI5vNwjRN11wmJoNlLZiYmLBFn0YDoxpBx7RfHfiedc9TsNym9QQhDQ8PY3Bw0N7euHFjzeeQJAkejwf5fJ67aORAIGCTC96Qy5g4vN8hzIuXK9OmbeEJqqragS0zRR67SVBNi+Lzvz2L3Dk/U1UW8LFXzK86AMrj8SAejyMWi9lq+/DwMNLp9Ix9m27/GbDHCSYkb3kfyLz2pdU532Gapn2fM5kMZFlGPB5HV1cXl3ksZ0I1eUwZQTUMA+Fw2LVIc7JhM8jvfxwgBO889hNcPeIIFD85nMTDB0uLzqUrFcR7nDjm/S8W7BzMDMFgEEuXLrW39+zZ09rGTwJTT0VRdI3wl4OltgqFQjAMw07K75ZpvZFqkRcTOuS0Rah3dVQ+kMybNw89PbWn2GGrQt4CoQRBgKqq0HWdS9PGvhcKFeb8dZfxbc5XFAXhcBiGYcyZEsctgvrA/jHsH3Hehfdf2YvewNwqnCzL6OrqsgkRi5KdK+0YHR4A/e5XnR3rN4Ncf0tDv+FihWVZNkll5tDu7m5Eo1HuA6dqSbBvWRbGxsZAKXX1twlXbgF5xwcggOKjB76LVSlH8fzPHcN45lQahBBsutIH4VwTC3kLh/ZPtUBt2LDB/vv48eNtFwNyuRxM0+QiGPOJJ54AUFKUgVLbmK+1G2B+3R3Mjg45bTIaMelrmoaDBw/a2+UDTLVgKXV4rLft9/shCAKXqunwWR2DZ5z7tXajD/I0pQJ5gSiKiEajoJRifHy8Kr+ydhPUw2N5fGe3E3iwZUkQ189RAYr9ru7ubtunlKVuqUZtsL77VaB4buHjD0J494c7wQcNwjRNJJNJjIyMoFAowOfzoaenB+FwmMvqU/VUfjJN0w4ijMVirvUZ4fpbQN70LngsHX+597/QXTjnI4tSQOHpCQ1qQMTKNY7Ce+yghnSqssDKkiVL7GIclFLs27evbb+BXTObzUKSpKoj91uBJ598EocOHYLP58NNN90EALZF0U1Vt2Panxv8jSznOQghKBaLdVVj2r9/v517z+v1YtWqVTWfg5Ur5E01ZRVZWM1ynmCZFPt2OYNFLC5ynWyfTaCCICCRSNSUr7FdBFU3S+Z88xxnjqsS/viqeTNO+oQQO0k8q2o1MjKCZDJZ9btED7wI7H7OOefb3w8SiTX8WzoogSn0rP/4/X709PRwoY4xNFKSlKXakmUZ0ah7eXCFrbeDvPZNiBYz+PTur0E1SmOTZlL8428GUDQtrFjjhc9fmr4pBfbtqgyOIoTYSiFQSk3Y7gqB2WwWlmW51j+OHDmCBx54AIQQ3HHHHQiHw/ZnuVwOsiy75kutaRqXFRt5QoectgD1rIoopRUm/UsvvRSSVHuNBFVVYVkWdyszVVUhCILr6Yymw7FDGjLpc6ocAdZfwXey/UgkAlmWkU6n63KPaAdB/cGBMZxOlVIREQB/+oo+BJTpzaXMXBwIBOw0LzWTbsuE9b3/dHasXAdy5ZZGfkIHM6BYLGJ0dBRjY2MwTROhUAjxeLyu8aqZaISYMmSzWeRyOXi9XlcDesib3w2y5WYszg3howf+x95/IqnhP3cMQ5IILr3MyaQwMmhUWH4AYN26dbaync1mcfz48fY0/hxYQK4sy2335R0YGMBXv/pVmKaJN77xjVNiN5h446Z6yptIwxs65LTJqLdc6alTp5BMJu3t8lVvtWArwfKUOryAVYPiLXtAPmfh8H6H4C1doSAc5bdwWjAYtJXFRoh+KwnqYLqI7+116mtvXR3B+t6pkwBTS+PxOARBwMTEBEZHR+vKr0l/+0vgtDP5Cr/7Pq4XGBcCNE3DyMgI0uk0ZFm2FxhuoBnElCGZTKJYLNrvmhsghIC88wPAustx5dgB3Hp6u/3ZTw4n8dTJNOYtkBHvLQuOeqEA03DGfVVVK6xv7Q6MAmD7iLeT6I+OjuLLX/4y8vk8brnlFlx33XVTjjFN0w6Mcss1hc2FvM3VvKBDTpsMTdPqisQrHziWLl1aYYKoFmwg5Y0AqqoKURS5VE0PvJiHcW5AVzykohILb2BqTrFYrFjI1ItWEFRKKb7y3BCK5+z5Ua+Id27qnnJcuVrKSE69rii0kAf9wbfsbfLy60GWra7vB3RQM9LpNEZHR2EYhisqajOJKcP4+DhM07StFG6ACCKEP/wzoKsH7zr6YyxPn7Y/+8IzZzGSNc5ZeUr7clkLR16qtKSUxy2cOnWqoSpM9cCyLDuYrh0m9ImJCXzpS19CKpXCddddh1tumTkYkgVGuZXLV9d1GIbRWUTPgA45bTLqUU3T6TSOHTtmb9eTPgoAt4FQgUDAHqR4wtiIgTNleQIvWe+F4uHzlZAkCZFIBKZpVh0AVQ2aTVB/eyqNnWcdkvm+zb3wl5nzmVra1dVlq6XMPFz3b/jZg8DEufyusgLyxnfVfa4O6oOu6xgZGbFTT7VLRW0FMQVKpIqdj/l3uwESCEH4k09BlkV8fP+34TVK5DNbtHDPkwPwBQQsW+2YzI+8VEAu67xL8+fPr/CfPXToUPsafw5MPW11f8jlcvjyl7+MsbExXHXVVXjjG9846/EspVMnMIpP8Gu/PA9Rb4qI8ioeoVAIixcvrvkcHo/HrivOE7xeLyRJQjqd5sp8YVkUe3c6A0M4KmLJcj4TjQuCYEcQj42NNT1HHiOo8XjcjvCtR+XO6Sb+43mnZOFl81RsWeKY8xRFQSQSgSRJ0DStpmCnGdueHAf9+QP2NnnNbSBdU5XaDtqDVCqFfD6PSCSCUCgEr9eLZDJZk/9wtWgVMWXQdR2JRAKxWAyxWMy1kpdk8XKQ3/sg+r56L95/6AH887o7AAAHR0vZMN52aRxn+ovQChSWCezbVcCVryylEySE4JJLLsHTTz8NoEROr7zySgAlJfXgwYM4efIk+vv7MTExUVfpUIZcLoef/vSn2LNnD1KpFEKhEDZs2IBbbrkFwWDQLpHbiHiyfft2bN++HRs2bMDrX/96e3+xWMRXvvIVnD17Fpdddhne9ra3zalIsvmaWfbcCFDK5/MIBoOglHYU1EnokNMmQtO0mgmYaZoVaT42bNhQ1yqdmfR5W4kFAgE7rQhPOH2iiFTSGYzWX+EDqTIxfLsRjUYhSRISiUTLVPFmENRv7x7FeL5EQmSB4P1XOtH5gUDA9jsrr9TScLsf/xHAfFSDYZCtb27KeTuoH0xFZZXLuru7kUwmmzo2tZqYMhQKBaTTaQSDQUQikaa409QD4eobYZ04gut/8TB2R1fi8fklgnn/vjFs6FWxdpMPLzxTskwNntExNmKgq7s0va9evdomp2NjY/Z7/rOf/Qx79+5tSvuy2Sw+//nPY2RkBF1dXdiwYQMGBwfx61//Gvv378df/MVfYMmSJfD7/RX3cN++ffj5z39ecS7TNHHvvffa2zfffLNdkpXlO55c+vpHP/oR+vv7IQgCRFHEd77znWnb+Y53vKNiO5/PQ1VV+Hw+V9zODMOAYRiuBxPyiM4daSLqUU2PHj1qm7tFUcS6detqPgfzm6k3hVWrwAK0WEoRXmCZFIfKgqAWLJERi/P5KoRCIXg8HmQymZYvPBohqIPpIn5yyCmdevv6LvSFFBBCEIlEbJcT5svXlPZqGugTP7W3yWvfCOJ1vyJNByUwFTUWiyEajUKW5Smkoh60i5gysIAvVVVRLBZdc08it78X9NQx/MGRh3AovARn1B5QAPf+dgD3bl2KaJeIxFjp3Tq4t4BX3Fgyo0ciEfT29mJoqFRC+ODBg4jH41i6dCkWLFiAxYsXY/HixfjMZz5Td9sefPBBjIyMYOPGjXj3u99tFzK4//77sX37dnzve9/DRz7yEfh8voqcxZlMBv39/RXnopRW7KtmDGLPxLIs7NixY8bjJpNTltJJVVXXYiIKhQJX6dh4AZ8z8nkGJsnXk9Zn926nTN2qVavqig71er0QBIE7n05eK1WdPF5EPlsaHAkBt0FQiqLA7/ejWCw2ZVKvBvUS1G/vHoVxbv3RrUp407qY7Y7AMkgkk8mmunbQpx8HsucKOni8IFtubtq5O2gOmIoai8UQCARsC0C9/aDdxJQhkUigu7sboVDItRyVRJIgvP+T8H324/j4vv/GX27+EHRBRrJg4t+eH8YfbOjBU78qjbVjwwZGh3TEe0vBXJdccolNTg8dOoRXvOIVdlL6RpFKpbBjxw6Iooi3vOUtFRW2brvtNuzatQs7duzA2NgY+vr6Kojgy1/+crz85S+v+lpbt27F1q1bp+x/xzveMYV4Vot8Po9AINCwy0G96JDT6cFn9Md5BkIIdF2vecAaHR3FwMCAvd1IIBRvJdEEQYDP54OmaS3xN6sXpklx5ICziFi0TIE/wF8pRqY4AqWJsZ2oNUjqeKKAX59wyPPbN3XD7/XYVZ5SqVRDhGTaNloW6GM/tLfJK14NonYGeB5hWRZGR0ft/KHxeLyuEqFuEVOg9E4kk0kIgmC/l26AhKIQPvCXWKaN4D1HHrH3P3UqjWN6AV09jt50cG/BfudWrVplu9ik0+mKeadRHDhwAJRSrFixYkrKKEmScOmll8KyLDz77LMwTdMWLXgBs0i5lTasWCxyZVnkBR1y2iTUQwwPHDhg/93T04Pe3t6azyEIAjweT90prFoFVVVBCOFPNT1WRD53TjUVgFXr+FRNg8EgJElCKpVyRaWphaB+84URMNq5JOzBLWt7EY/HQQjB+Ph4a8xl+3YBg+dS6xACctPrZz++A9eRTCbtoJvu7u6aErO7SUwZisUistksPB6PqwSLLL8E5Hd/H68deBprk05u3397bghL1zhBneOjJkaGSsKA3+/HokWL7M+aGbV/5swZAMDChQun/ZztP3PmDLLZLERRdC1903RgGW7cLLNaj9X1QkeHnDYJtZJTSikOHz5sb69bt66uaD2fr1TNiDeTvqqqME2TKzXXNCpV0yXLFah+/l4BRVHs/J9ukvtqCOreoRx2DDht/KNXLEa8KwbTNDE6Otqy52899pCzsfFKkJ6+llyng+Yim81WpGiqhuTxQEwZUqkUDMNAMBisS/1tFsgN2yCs3Yg/PnQ/JKtEQEdyBn46kKhIzF+unl5yySX2/sOHDzdt0csCnGbKzV1uAcrlcqCUcqmeiqLY9kpWDDzNk7yAv5n5PIRpmjX7qgwODtqKEiEEK1eurOvaPp8PlmVxtfLyeDyQJIk7wtx/VEMhX1JNBQFYuZaf1TsDM+dbluVaZHA5ZiOolFJ8fZeTOmrD/CBec+lCaJpmJ2VvSZvOngL2v2BvCzf9Tkuu00FrwIouGIaBcDg8q5mcJ2IKcGTeJwTCuz+MRVYabzj5K3v/wwcTCCx2pvXkmInhs6X3cPny5TahLhQKOHnyZFPawuaemZLss/3MulcoFOzUh7zAbdN+oVDgKtUiD+iQ0yagnlXPkSNH7L+Zk3itEEURiqJw17FVVbXrKvMCw6AV1VOWrFDgU/nr/sycn06nucm8MBNB3TmQxaExp+9/9IZVyOVyLcnFWtGe55xSjli4FLhkw4zHdsAnypV1VVURi8WmHMMbMWXgxrzf1QPylvfh9pO/xPxcKQerRYGvHRxG97yp6qnH48GyZcuc/QcPNqUdbO6p1vLHrEE8qaemaaJYLMLr9bqSb5RSWlfZ5gsZ/M3O5yEaNemX1z+uBTzmNhUEAV6v17WI1plw4ogGrVAaREWRT9WUF3P+dJiOoD5wwCEM1y7vwvKw2JbyiHTHb+2/ycuv7ySvPk9BKcX4+LgdKFVOUHklpgzcmPe33AxlzQa8/5BTiOLoeAEjQYfoTCRMDJ4pWfbKTfvHjx9vinWD+Y/OZL1jpIuZzIvFIgzDcNXHczrkcjk7hsMNdEz7leiQ0wZRz4qnWSZ9r9fLnUmfBUJxpZrqFEfLVNOlKz3w+vjq+ryZ86dDOUE9lS35mzK8ZX0c6XS69W04ewoYcMyR5IpXtPyaHbQWyWQS2WwWXq8XXV1d3BNTgDfz/oewURvADYPP2/u/dXgE0V6HNB/aVyoQs2TJEjvhu67rdjBTI2C/f6aFKRvPysuo8hgYxcihW21i1+fJCuom+Jqhz0PUUxWqXDVdsGBBXSZ9QRBskz5P8Pl83AVC9R/TUNTOqaYSwYo17qyMZ0MoFOLOnD8dGEH9+jMn7H2X9vqxLNge9bJcNcXi5SA989ty3Q5ai4mJCWQyGdtUzjMxZeDGvB/rBvnd38e7j/4IQb1kcSkYFM8azmIxlSz5nkqSVBG1f/z48SnnqxULFiwAAJw+fXraz9n+vj4naDGfz4NS6mpd+8mwLMs27bsBFrvSsQSV0CGnDaIek365v2kjqinAVwoKWZYhyzJXbgbUojhx2FG2l65U4PHy1e1Zsn0ezfnT4Wxax68OO3XG33rZvLZdu8Kk31FNLyiUT8qEkPNikubGvH/tTQhfsgbvPurkPn1iKAVPzLmHxw6V5opyv9Pjx483rNStWbMGhBAcPXp0ivXEMAzs27cPhBCsXbvW3s8sfh6Pp65y3a2Cpmm28OMGeBJ13AY/veI8A3uhayWHzTTp85Z4n0cf2KGzBnJl1aCWruRLNT0fzPnlIITgJ8cydl7TxVEfXrthcVsqnNChAeC0o/SQzde2/JodtAflpnymoJabgXlFo+Z9Xdfxk5/8BHfddRc+8YlP4M4778S3v/3tmscCQgiOXfNavGLkRaxPHLX3/3TwlP336JCB9IRZQU7T6TTGxsaqusb27dtx99134+GHH67YHw6HccUVV8A0TXz/+9+vsPz88Ic/RCaTwebNm+2Kcwz5fN4uvc0L3Dbt8yQ2uY1O+dI6QQiBYRg1m2CbYdInhMDj8aBYLHLln+Lz+WAYhisl4GbC8cPOyz5vgcxdXlO/3w9JkjAxMcG1OR8459/mC+HH+50o39+5JALTMGoqdVov6M6nnI0FS0DmLWjZtTpoH6bzMSWEwO/3IxaLnTfmfb/fD6/XW7VgoOs67rvvPhw/fhyhUAjr16/H+Pg4nn32Wezfvx8f+9jHEI/HqzrX448/joceeghXS1G8++gj+POXfRQAcFSQcIWWQNhTIvrHD2vY+DI/enp6MDxcSgP3rW99y55HTNPEvffea5/35ptvxqWXXgqg9G4PDw9PW0r5jW98I/r7+/Hiiy/i7/7u77Bo0SIMDg7i7NmziMfjeMMb3jDlO4VCAZZlQVVVbmIUWKVHr9fbtpLRk6/PyqFf7OBrpj7PUOsqp1kmfUVRQAjhSjVleet4Uk1TSROjQ0406rLVfKmmgiAgEAjAMIzzwpwfi8Xw80OjKJolJTrqFXHD0mBNpU4bAT28z/6bXFZ9Pe52QBAEyLIMr9cLVVURDAYRCoUQCoUgCAJEUUQ4HLb3BQIBqKoKj8cDWZa5Mm22EzMFP01MTNhR/G4GHFWLdDoNy7KmqIOz4dFHH8Xx48exdOlSfPrTn8Z73vMefPzjH8dtt92GTCaD73znO1WdJ5PJ4JFHHoEoirjqY/8fVoQlvGL4RfvzPdSZJ06fKKKoWRXqabFYRH9/P4DSHNXf32//q3axGQgE8PGPfxxbtmyBYRjYvXs38vk8tmzZgj/90z+ddlxglj9FUbjKeVooFCBJkh041k50Uko56CinDcDNKH2AL/8UZtLnZQUMVKqmoYiIWJyfARAoDeiCIJwX5vxwOAxFUfDgC05072tWRiCLgh0kFY/HW6agUkqBY45iS1aua+r5q4UkSbZvtSzLkCQJgiBUpXTMFTRDKYVlWbb1oVgs2krOhYi5ovKZuVxVVei6zvUCzrIsZDIZhEKhqpRA0zSxfXspX+/tt99ekb7oxhtvxHPPPYejR4/i1KlTFQFM06G/vx+maWLNmjVYvnIl6O++D3d8+V/xdPd6WETEYYngKlODInpgmqUSzsuWLcMzzzwDoDSf3H333XNa8bZu3YqtW7fO+Lmqqnjzm9+MN7/5zbOepxz5fB6qqsLn87XU6lILCoWCrYK70aZisehaOiue0CGndYDJ7rWS02aY9IHSYMLTpMX8horFIjdtKmoWTvc7z2f5ag9XphJRFOH3+1EsFrlaZEwHVVXh9/vx9NFhnJootZUAuGmFU66w5QR1aADIlgVbLF/dvHPPAOY+oygKFEWxiSgDI5Ks31uWNeV/AOjq6gIA27ePBfuIomirquV/y7JcMTlZlmXX/y4UCheEslJtuqhEImH3KcMwuPbJY6b9YDBoR6PPhGPHjiGfzyMej09bk37Tpk0YGBjA3r175ySnkxU+su5yLFi5BDcO7sAv5l8FE8ABK4tNYqlPnThSxI2r4/D7/Tbh7+/vrwhYahdYPmyeyCmrZOXxeFxpk6ZpCAaDbb8ub+iQ0zpQj79ps0z6sixDFEWuFEqv1wtBELgy6fcfK8I693g8HoK+xbK7DZqEYDAIQogrfk21QFEUhMNhGIaB7+908oteNt+P3kBlRGsrCSotU00xfxGI2hr3AVZEwuv1wuNxFjSMIDI1s57F4eSqWbMlQJ+s0DLCGggE7EjnQqHAXXW4alBLHlOWqL+7uxvRaLSlZXEbBaUU6XQakUgEfr9/1r7P8otOR0zL9w8MDMx53UWLFsHr9eLw4cM4duwYli9fDuH29+Ctf/8Z/Lr3cuiCjH3EwEaUFpX5nIWhAQPLli3D3r17AZTIshvkFCipp4FAALIscxOvoGmaPa+1strddOj4nZbQIad1ws0ofYA/kz6llBtyalkU/UccdWnJSgWiyM+LLkkSfD4fNE3jWgUTRRGxWKzkh3Z2GL896SiXN68MT/udlhHUYy/Zf5Lll8xyYO1gpmOv12unkGG+X4wAttsiYBgGDMOoeKckSbKJs9frtd871s5cLsc9Ua0nwb5pmhgfH0dXVxdisRhGRka4/Z25XA6BQACBQADZbHbGdiYSCQCl+zEdmJ8tO242qKqKt73tbfjmN7+JL3zhC1i2bBnC4TA2eny45cxTeHjRdcjBwknksQQl96vjh4sV5PTkyZMwDMMVP0tGTn0+HzfktFAowOfzwePxtH1eY+/0xW7avzi98JsAN036LFkvD2CmT2YK4QGDp3Xkc+fSRwnAkhV8veShUIh71ZQQglgsBkIIEokEHjs8Dt0qTbRhr4grF8xsdpqu1GmjoEfLlNMmkVNWMrO3t9cugpDL5TA+Po7BwUGMjY0hm81y46piGAYymQxGR0cxNDSEZDKJQqEAWZYRDocxb948RCIR13I0zoVGKj8Vi0WkUilIksR9iqlUKgVBEGY1zbL5Y6ZnxfZXK4JcdtlleP/73w9VVXHs2DHs2rUL9xdl3HrqCXiN0jleMBxr2/iIgVBgfkW1qMHBwaqu1Wzous5dOVNWXMetlFI8ixbtQkc5rRFMbq9VOWXRkED9Jn0WEcyTSZ+ZPnlSck8cdV7svkUyV6VKFUWB1+tFPp/nZoExHaLRKGRZRiqVgqZpePy4U5rw1cvDkOdQopupoFKtAJxx3h+yYk1d5wGcFEWqqkKSJDtiOJfLce3POBmWZSGXy9ljgc/ng6qq9j8WQDSX72O70IySpNlsFpIkwe/3IxQKcbu4Y37BzKdzusUNeybNMt0+/vjj+OEPf4gNGzbglltuQVdXF8bGxnDyq/+C3zn9a3xv6WswAh2jtIg4KRHf0ycszJ8/H6dOlXKhnjlzZkY3g1ajUChwZdpnbjxuqZcdv9OOclozmL9pLSphNputMM8sXry4rmuz1TRPqyre3AxyWQtjw2XpozhLuh8MBkEp5XZiBUpt9Hq9yOVyyGQyOJsu4ui4Q9xuXD69KXIymqagjg4B9Nz7JknA/NonUEIIQqGQrZISQpBOpzE0NIREInFeEdPpkM/nMTY2hqGhIWQyGYiiiEgkgt7eXgQCAVf915pBTBkmJiagaZptBuYV6XQahJAZCQYjPTP1OzbGV0OOjhw5goceeggLFizAe97zHvT19cHj8aCvrw8v++Tf4Iazz9hlTfdajrBx9pSOvj4nV/BM5UfbAbeT308HVi3KDVcH3nKYu4EOOa0DtU5k5S99IBCY0c9oLsw1oLkBFqXPi0n/zEmHuPuDAiJd/KSP8ng88Hg8yOVy3JiKJ8Pj8SAYDKJYLNoprp7sd3xNl4Q9WByunvA3haCOjzh/R+MgQvXPlBCCQCBgkzTTNJFIJDA0NGTnpryQYJomUqkUhoaGMDExYefe7OnpcaWOeTOJKUMikYBhGIhEIq4Qh2qgaRo0TYPP55u2jcw1YWJiYspnAOx3rxoXhueeew4AsHHjxin5ckWPF6OXXY3bTj4BADhBNego9Xldp/B5eu1jBwcHXQs2YxkvePKzrGWB0MrrX6zokNM6UGunKSenixYtqlvFUBQFpmlyQ2wURYEgCNyoppRSnOl3TEILlyhcRTyGQiFYljWl/jQvKC+lWk4kfnPSUXmvXVK7qalRgkrHR52NWHfV31NVFT09PfZ9TyQSGBkZ4SZwr5WglCKbzWJ4eNgmQJFIBD09PW1Tp1pBTAHYzxIA1wn6U6nUjOrpggUlxXImtZLt7+vrm/M6jMjO9FyTKy7F5YM74DGLMEBxwnLEjXwqapNn0zQxNDQ05/VaBU3T7DmFBzD10i0f7g457aBqMJm9EeW0Xp8e5m/Km2oK8GPSTyVNpCcc4r5gCT/po3w+H2RZRjab5VatC4fDEEXRVtwAYCBVxPGE0+euXVyfH1RDBLVMOSWxucs5ejwe9PT02MQlmUxieHj4oiCl04GRVBaoE4vFEI/HIcutez9aRUwZdF1HJpOBoigtrUrWCHRdRz6ft9/9cixbtgxerxejo6PTEtQXXyxVeGKlQ2cD8+lmvqOTcerMGTxHPLhhcAcA4Ah13oORIQu9vfPt7Y5p3wGl1HW/04sZHXJaA+rxN02n0xWmm3rJKa/+pizlDQ84fcJRTaNdIvwBfkz6wWDQriLDIzweD1RVRaFQqCBxT5appksjHiyswaQ/GXUT1HKz/izKKVN+u7q6IAgCUqkUhoeHuQogdAuUUrs2eiaTgSzLiMfjLQm6aDUxZUin09B1HcFgkFvzfiqVAqV0yn2WJAlbtmwBANx///0VROTxxx/HwMAAli9fXhGfsH37dtx99914+OGHK861YcMGAMCOHTvs1FAMe/bswY4dO7BTDmJr4gUAwAAtIkdLi3hqAUH/PPt4ln/VDbgdIT8d3PQ7ZflOL1bw+UZzjFojCctXouFwuO7JgDd/U1Z7mJeSgtSiFf6mC5fyk07H4/FAkiSk02kuB5tyc/7kUqpPluU2rcekPxn1RPHTKsipx+NBJBKBKIooFApIJpPcKtRuwrIspFIp5HI5RCIRO/gtmUw2JUq6XcSUIZlMIh6PIxKJYHR0dO4vlEHXdTz22GPYuXMnEokEVFXFmjVrsG3btrrcBUZGRvCLX/wCBw8eRDqdhsfjQXd3Nz70oQ9h8eLFEEWxwiXr5ptvxqFDh3D8+HHcddddWL58ORKJBPr7++H3+3HHHXdUnJ8tLiYHU27YsAGXXXYZXnjhBfzHf/wHFi1aZEfrMzX15ltfhyV6EpcdPYgXYpfgKC1gAymV06W6806dPXvWtXynlFJommZngOFhrCz3O223CEMphWEYLbVw8IyOclojGiGnjaTp4M3flDeT/siwAa3A0rOUUkjxAr/fD0optwredOZ8ABjL6RUm/Vcsao7KVrOCmhiz/5xs1i9XS1lO1vHx8Q4xnQOGYWB0dNTOHdoMFbXdxBSo37yv6zruu+8+/OxnP4OmaVi/fj0ikQieffZZ3HPPPTUT3d27d+Mf/uEf8Mwzz8Dv92PDhg1YuHAhxsfHcf/99wPAlPbJsowPfvCDuPnmm6EoCvbs2YPx8XFceeWV+MQnPoHu7ur8qwkhePe73423ve1tWLFiBUZHR7F7926Mj49j3bp1eP/734/XvOY1INdvxeuGngUAHLEc64iWjUIU+fA7LRQKdu5sHuC23ykPabXcQkc5rRG1dBZKaYUfUKP+pjyRG6/Xa5dR5AFnTjiqac98CYqHj3UXq+qTz+e5WViUYyZzPgC8cNZRxXsDMhaEmjdA16SgFsraVVa2VFEURKPRjlraADKZDAqFQoWKyqLha4EbxJQhnU7D6/UiGAyiUChU1fZHH30Ux48fx9KlS/GBD3zAJkOPP/44HnroIXznO9/Bhz/84aquf+bMGXz961+H1+vFBz7wASxfvtz+zLIsnD59Grquw+fz2WZ+BkVRsG3bNmzbtm3O62zduhVbt26d9jNCCK6++mpcffXVM36f+AO4fOMKLJgYxhm1BwlqIEokECIiEurFWOKM/XtYwFa7weYTr9fLhfDhtt/pxUxO+ZjBzyPU0lkmJiYqJtwLxd+UEMJVcJZhUJw940xIPJn0/f6S6YwX94dyzGbOB4CdZeT0ivn+pmc+qFpBpWWE81wkr6qqHbW0SZhORa1lMnaTmDLUknrJNE1s374dAHD77bdX/NYbb7wRfX19OHr06IwBRpNx//33wzRNvP3tb68gpkBJWFi8eDEymYxdJtdNiDf9DrYNPAWgUj2VhB77bzeDolj1Q16UU8B9v9OLFR1yWgNM06xpAix/yaPRqE1UagVv/qaKotRVJatVGDyjwzRKaoQkE/TO58OkTwiBz+dDsVjkZmFRjpnM+QBgWrRCOb28r76+OxeqIqhWJTkNhUKIRCIwTROjo6MXbRR+s5HJZDA2VnKhiMViVY1XPBBTwDHvy7I8p3n/2LFjyOfziMfj0woGmzZtAoApwUXTYXBwEMeOHUN3d/eskfXMclLvHNAskFgcNy5S4ddzOEodZVKwHHI6ODjo6kJP0zSIoshNkJub+U4v5qCoDjmtAY3kN72Q/E3ZS8oL4Ro646wu5y+UIUp85DZVVRWCIHCpmiqKMqM5HwCOjBeQKZYmKEkANvS2TvGZk6CWTZSRaAyBQACapmF0dJSbTBEXCorFIkZGRmAYBsLh8KyBQbwQU4by6H1RnDlTB4tIn2lMZvsHBgbmvObhw4cBAJdccgl0Xcezzz6L+++/H/fffz+eeuqpCtN0LpeDJEmuq4Lqa2/DTWefQwYmBmlpDFfkLgClcdMwjIqKhu0Gm1fc8vOcDDf9TllQ1MUIPpYm5wlq9TednHy/HhBCIEkSF/43DIws8/DSWBbFyKDTjnkL+FBNgRI5NU2TS2WPlVGdqULNzgHHHWVttwpVbm1arll9UMvIqeL1IpvNztjuDhoHU6Sj0ShUVYUkSVPcJngjpgypVApdXV0IBoPTuqoAsInXTJX6GCGvhqCdPXsWQCm46R//8R8xPDxc8fkjjzyC973vfVixYgWy2SwCgQD8fr+rVieyYDFuCaTxEIB+q4B5ogKBSPB6wihoSQDA8PAwurq6XGkfSynFqum5DUYQ3QyKuhgj9jvKaQ2ohZwmEomKF6teB3NZlkEI4cb3hPmb8qKaJkZN6HrJ7CEIQLyHj/WWoiiQZZlLYlpNGdU9Q07fvWx+e0yRMyqoZaQo1SGmbQGlFOPj40in01AUBfF43FYjeSWmwNxlQ4G5lTm2vxoCyd7vJ554ArlcDu973/vwd3/3d/jUpz6FzZs3I5vN4qtf/artOsNSJbldBWn+NVfjkokTOEWd3ygRh4xOJtnthNtkcDroug5RFF15brzM/e1Gh5xWAebzUUsnKXemj8fj8Pl8dV2brZh46aC8+ZsOn3XuS6xbgiTzY9IHwMXKfzLmKqOqmxSHxxylfn1P+4I4JhPUkrrl+FwV8vxYEC4GpNNpJJNJiKKIrq4uRCIRbokpw2xlQwFnPG9GgB9Tky3Lwjvf+U5s3LgRPp8PPT09+L3f+z0sXrwYuVwOv/nNbwCUAiMJIa4HRmHTVXhl8gCSMJGmJcuTR+aDnAL8+p26oWDyMve3Gx1yWgUIIQ0FQzXib8peBl6USt78TYfPOib93j4+TB8sEErTNC5cH8pRTRnVY4kCimZpApcFghWx9vrIMYJqGAb8fj8EfxnJyE5PqDtoHXK5nE1QVVWFpmncElNg9rKhwNwBprUEwLBjwuEw1qxZM+Xzq666CgBw5MgR+5qmabpOToms4JWLAxCohZPn1FNFcsjpyMiIq0FRvPmdMoLoFjm9GIOiOuS0StRKxsoTGTeSM06WZRiGwU3n9Hg83Pib5rIWUhOOWbpnPh+rbFVVQQjhUjWtpozq/mGn3au6vJDF9g8TkiRBEARQSiFGy3zfUu4FalzMYBYTSilEUZw14IgHsGpszH+5HCzd1EzuIbWkpYrFYhX/z/R5+fvGS2BU9Jot2JA4Ypv2FTkKXoKiyv1OeQAjiG6Q04s1KKpDTqtELdJ6oVCoGIx6enpmOXpmsGAoXmR91h5+VFPnvviDAgJBPiZMVVVhWRZXQWxAKeeqJEnIZDKzLnYOjDh+smu763NHaQSSJNk5TMfHx0HCzsRPJ5Jtb8/FjnIf03ITv9t+k7PBMAzkcjnbv7ocTCyYKZ8n29/X1zfndZhVbKaMHGyBWt6GXC4HSqnr6imWX4JX5k/gLC3CoBQCkSBLTpBYx++0Em6WEuWFA7QT/I4unKGWzlFe+s7j8dRUVq8ckiRxFQzFah7z42/qrCZ75vGhmkqSZAdC8aJ2A6WFRSAQgGmas6qmlFK8VEZO17XR3xQoJS2PxWI2MdU0DbrqBGQpBf7U6AsZk4Of8vk8JiYmIEnSjGohL5hJPV22bBm8Xi9GR0enJagvvvgiAMyat5Rh9erVUBQFY2Nj0yqNzJxf7tplmiaKxSK8Xm/TC1vUAkIIrlnXB8HSMXBOPfVIHb/TmaDrum3RcePaFxs65LRK1CKrl5PTeDxe9wDEVo28dEyeKlWZJsXosHNfejjxN/V6vQDAnWoaCAQgiuKMQVAMQxkdE5rjKnFJvL3KaSwWgyRJSCaTziIoFLE/l3Lpuhd7HdSGmaLyc7mcHcU/Wx7UuaDrOn7yk5/grrvuwic+8Qnceeed+Pa3vz1jCqhqMTIygj//8z/HRz7yEfzmN7+BLMsVAamSJGHLli0AStWdyhfbjz/+OAYGBrB8+XIsXrzY3r99+3bcfffdePjhhyuupSgKtmzZAtM08b//+78V5zpw4ACeffbZEgm85pqK7+XzeS5qyAeuuQ5XjL2EU+fynfIUFNXxO3VwMZr1+ViScA5KaU0J8CeT03rBW6S+LMuwLIuLF2VsxIB5rhmiCHR189GVvV6vnTKGFxBC4Pf7oev6nH6wxxIOqZ4XkBH0tM9VIhwOQ1EUZDKZyhRcIcf3zxgfRWxyHtQOmo650kWl02lIkgRVVWEYRs3PQtd13HfffTh+/DhCoRDWr1+P8fFxPPvss9i/fz8+9rGP1T12fu9737PHqO3bt+Paa69FMBis6FM333wzDh06hOPHj+Ouu+7C8uXLkUgk0N/fD7/fjzvuuKPinJlMBsPDw0ilUlOud8stt+DYsWPYv38/7rrrLixZsgSZTAYnTpwApRS33norlixZUvEdXmrIk64ebJHG8eVZgqLcct9wM0J+OpS3p93jOw9zbrvBx4zOOWqtzMRKAAJoKJExC4bipWa4LMvcEOWRMpN+vFeCKLqfQkoQBMiyzJ1qyipVTTexTsbxhDPoLo95W9msCvj9fpsMTWlnWUCUdvK4nWYK6BDUVqDaPKbJZBKSJCEYDELX9Zom7EcffRTHjx/H0qVL8YEPfMBWEB9//HE89NBD+M53voMPf/jDNbf96aefxuHDh3HNNdfYFZqy2SyCwSA8Ho/dRlmW8cEPfhCPPfYYdu7ciT179kBVVVx55ZXYtm1bVcFQDOxcjz/+OJ5//nkcOHAAkiRh1apVuP7666d1D+CphvzLNq2EcSyHhGggbAdFlXw+k8mka+4blmXBNE1uyCkLTHajPaZpglLqqhtIu9Ehp1WgllWLZVkV5LS7u7uua/JWGYolIOaFnI6POs+kex4fgxfzyeXlmTH4/X6YpllV9oBj407bl0XbM3F6PB6EQiHouj6t3x5ZtNzJdDp0BiOnT6J74eIOQW0BakmwzxL1x+NxRKPRqsvJmqaJ7du3AwBuv/32CoJ244034rnnnsPRo0dx6tSpmirrpdNp/PCHP8Tq1atxxRVX4KmnngJQckOYrjKToijYtm0btm3bNue5t27diq1bt874uSRJeM1rXoPXvOY1Vbe3UCggGAxCURRXXaW8V74CV+14CGd644gKfkhiAIZZcv9JJBKu+hbzQuABJ0jLLbJsmiY3/rftQMfntArUQk4nJiYqjq/3xeYtGIonFwPToJhIOGp2tIuPKH2v1wtKKVcmfY/HA0mSqk5rVaGcRluvnAqCgGg0ahOdaYPIeuYDvnOBWZSCnjg6fSWpDhpCPZWfTNNEIpEAIaRqtfHYsWPI5/OIx+PT5oDetGkTAGDv3r3VNx7AAw88AF3X8Za3vGVKGwuFArxeL1eTO1vEuk2+iNeHy70FDNNzPpWiE7HvZjopoDTfMKGGB7CgKDcUzIvNtN8hp1Wg3mCoSCRS9yqLvYy8dEiegrOSCROMw4giEIrwQU49Hg+KxSI3bhhAKRCKUjpjqptyTBQMjOWd/tYO5TQSiUAQBCSTyRndZ4ggAItX2Nu0//DMpU47qAuNlCQtFotIpVKQZXnavKKTcebMGQAzFydh+wcGBqpuw/79+7Fr1y7cdNNN01qrWP/3+9tTirca6LoO0zTtIEo3sXFFL4bOBUXJkvMMGw1OaxRsvuElKIrNx26QZV64QLvQIadVoJFI/XrBGznlKRgqMea0IdIlQRDc98Nh9bJ5MumLogiPx4NCoVAVYe5POqppyCMi5mvtAOzz+eD1epHL5ea8b2TpSmfjRCk9T4egNgeNEFOGbDaLYrEIv98/J5FgalypNO1UsAwA1ap2mqbhf//3f9HT04NXv/rV0x5TLBZRLBbh8/m48tsrFAqQZdn1ogZdmzahK3MGWWpCFh1y6nYlMN6CojrktH3okNMq4CY5rTUYq1VgwVk8IDHGp0kf4CuFFEvyXY1qCgBnUo7f2+Kw0tJJXBAEhMNhmKY5Y6WeCixZZf9J+484f3cIakNoBjFlYCpbJBKZte/MlSKI7a/WPebHP/4xEokE3vKWt8xKGnK5HARBqEgr5TbYeOG2ekp6+rBRG8AQ1aFIlWZ9N/M18xgUBXTIaTvQIadzwLKsmsy0zSKnoihyU7aUBUPxkN+UUorEaDk55cMXyev1wjAMbhYTAOw0P9U+t3Jy2hdqrRmNmfMnJiaq6uMVyunwWdCkE3TYIaj1oZnEFChNnqlUyo7gnwnseTdj8XPy5Els374dV155JVatWjXrsfl8HpZluV+ZqQyapsGyLNfJKQBc1qVgmBYrzPqaplWmdXMBuq53yCk65LSDSaiFbGiaVpHkvFHllBeiw1MwVD5rQSs4i4Vo3H3llJnleFJNvV4vRFGsOhAKAAbSDjld0EJyWos530a8F+hyygDTF56p+LhDUGtDs4kpQzXmfRYANJMyyhZTcwUKmaaJ7373u/B6vbjtttvmbBulFPl8HoqicBNgA5Tug6K01lJRDS5dtxSjVgEC8UIgzrPjwe+Up6AowzBcaUutQtn5Dj6eNseoZbVSnkJKUZRZ1YPZIAgCBEHgZqXEEzkdLzPp+4MCPB7311e8mvQppTWR0wrlNNgackoIQSgUqt6cX/Y9csU1oI8+BACgO58CbqhMAcQIajwedz3NVLkfISMdPp8PlFK7qIdb73eriClDMplEd3c3wuEwRkZGpnzOovpnev6MDM0V/Z9MJnHmzBmEQiF87Wtfq/iMqX0nT57EF77wBXg8HvzRH/0Rcrkc/H4/VFWtKu9vO6Bpmr1gc1Ol9K3bgK6nfgUr1g1ZCkHTS1bA8fFx9PX1udau8spMPMyJbroZmKbpWlGEdqNDTudALS9D+UDcSNlS3oKhJEmyc7y5jURZflNe/E09Hg8sy+LC7QGAXRaRmQyrgW5aGM46i48FodZE6rMyqslksmaXlXJyioN7QDMpkEBldLgbBFWWZciyDEVRIMvyjKlmJpMtSil0Xbf/FYvFlr9jrSamQGncymazCAQC8Pl8UwjXggULAGDauvbl+6slRKlUakaimcvlcPToUXsBye61z+fjhpyW+526SU6Jx4sN4gRGoUMWwzY5dVs5ddOUPh0Mw7ADYNutZLqZZ7Xd4ONpc4x6ldMLKVKfJxeDymAo97uvIAhQFKUmhbLV8Hq9NRcDGMrosM5xRYEAvYHmD4CCIFRdRnVaLF8DhKPARAKwLNAXnwO5dmp0dqsJKiEEXq8XqqpOMceynJosTRCl1G7DxMRESQE+Z6IsJ7XlbS8UCsjlck3Pl9sOYsqQTqehquqUsqEAsGzZMni9XoyOjuL06dNTUkq9+OKLADBtZaVydHV14fOf//y0nx0+fBhf/OIXsWbNGvzxH/9xxWcs+T0vFe/YwtbtfKcAsGlhGD9I6VhU5nfqdq5TFnvBEzkFSvNiuwUJXjhBO3Bx6MMNoBZSVj7gN1K2lEdyykNbTJMileSLnPLk8sBQj5vBSK6sHKwqQ2pBeq5AIABBECr8smsBEQSQy15ub9NdT814bCt8UEVRRDgcRm9vL6LRKBRFgaZpSKVSGBsbw+DgIIaGhpBIJJDJZJDP51EoFGxTvqZpKBQKyOfzSKfTGB8fx9DQEIaGhjA+Po50Oo1isQiv14uuri709vYiGAw2xYzXTmIKlO5/JpOBJElTcotKkoQtW7YAAO6///4KEv74449jYGAAy5cvx+LFi+3927dvx913342HH3644baV17XnBcViEYIguJ5SavXGtUgamYpE/G4rpwBf1ZHcVHJ5EYnaAT6eNseoRbYvn3RnyuFXDZgZnYeOKIoiCCFckNNs2rKT7xMBCIbdX1sxcsqLSR+orxjASJlJv9vf/GFBFEX4/X4Ui8WGfHPJFdeAPvHT0sbenaDJcZDI9FXYmqWgyrKMQCBgK9LFYhG5XA75fL4p2TRM07QVV6CkMKuqaiuPgUAA+XwemUymrvdwOmKq67pdVz6RSEBVVaxZswbbtm2z84zOhVwuhwMHDmDfvn04c+aMXSmqt7cXmzdvxpYtW+D3+xEIBJDL5Sru1c0334xDhw7h+PHjuOuuu7B8+XIkEgn09/fD7/fjjjvuqLhWJpPB8PBwU0zxxWLRTn5f70Kp2Sj3q3Rz3BcXLkYk+0tIgaX2vnQ643pdd2ZK5wEdctoeuD+7c45qO8PkKjyNKDUsjRQPYCt5HtqTSZcFQwUELpLvy7LMjT8uUArEq6cYQAU5VZtv0g8GgyCENE4uVm8AIuesEqYB+viPZz28EQWVEIJwOIzu7m54vV4UCgWMjo5idHR0CtlqJizLssnY2NgYisUiVFVFd3d3zePKTMT0vvvuw89+9jNomob169cjEong2WefxT333FORDm82PP744/jmN7+JXbt2QVEUXHrppVi8eDEGBgbw4IMP4l//9V+RSCTshUk5ZFnGBz/4Qdx8881QFAV79uzB+Pg4rrzySnziE5+YtspTM6FpGhfJ7xnKyambIIRggTgBCE4uWMPQXV98G4YBQggXz4u567gVsX+xoKOczgLLsqqegFgOPYZGyKkkSdzUZ+epGEAmVXZ/Q+4PUoATQcpDPlqg/swBozmHnMb9zZ0gRVGEz+dDoVBoeJIjkgTyqteBPvB1AAB94ieg224H8cxsoq1HQVUUBZFIxH4XJyYmXFmAaJpmE6lIJIJQKASfz4dEIjFne2Yy5T/66KM4fvw4li5dig984AO2IvX444/joYcewne+8x18+MMfnrNtHo8Hr3nNa3DttddWqK0jIyO47777cOzYMTz44IN473vfi0AggGw2W/GeKIqCbdu2Ydu2bdOcvRJbt27F1q1b5zyOYdWqVTP6owKl90NVVXg8Hi78xQ3DgGVZrpNTAFgW8eCYIaGkXZXG3Ewm46pyWa5W8jAXGYbhClHm4be3Cx3ldBbUskopn+wmBznUAkEQQAjhphPy5P+aSTn3JBB0v+uywBbe/E0Nw6j5eY1kneObbdb3+/0ghDQtKIlc/1rAc07ZyaZBf/vLOb9TrYLK1NJ4PA5BEJBMJjE2NuZ6/9d1HSMjI0in05AkaU4VdSZiapomtm/fDgC4/fbbKwjHjTfeiL6+Phw9ehSnTp2as0033XQTbr311iluAN3d3Xjd614HANixYwcymYztqsALNE0DpZQrv1PDMLioIb98YRwTMCEJzvNyKyUbA5sPeVBOgRI3cKMttQhm5zvcn+E5Ri0Esdx3qRHVlAU/8EROefF/zaSdxUKQA+WUTSS8kFNJkiBJUl0+nRXKaRPN+oQQqKpqp0pqyjnVAMgrb7K36WMPgVpz98+5CKqiKOju7obf74emaRgZGeFCVStHOp3G6OgoDMNAKBRCPB6fYl6cLfjp2LFjyOfziMfjU6LkAWDTpk0AgL179zbUTpYuamJiwrYqTTbtuwkWoObxeFxPfs+g6zoXQVHzVi1DxtIgivyQU97SSbF8o270nYvFtN8hp7Oglk7QTH/TWq/dSvASqU8prVROQ+53Xd4i9ZkKVI9LSDJflgXB17wJQFVVCILQ9MmNvPr1pag4ABg+C+x6ZvYvnMNMBJVFyJerpTwsyKZDuYoqyzLi8bjdF+eKyj9z5gwATEtMy/cPDAw01EaWVi8UCtn++JIkcRPUApRM+ywnMA9gize3TftiVzcUbYw75ZSndFJsfnYjIT4v3KDVcH+G5xi1TE7lL++FpJzyEpyVz1GU35JA0H3llAVD8UROLcuqmZxqhoW84Qx4EW/z7q2qqrAsq+nJxUn3PJArrrG3rfv/C1SvTpmdTFCj0Sii0Sgsy7KDnc4HsHRUQCl1XTQanTNdFMtZOVM2EWaibzS35RNPPAEAWL9+PQDYAWQ8mfbLk9/zAJ6CoiKYgFSunKbdJaeAe2VDp4Obbga8cINWo0NOZ0G9PqcXinLKk/9ruWrqUwVIsvumON6CoWRZrst0PlGofL4hT3MmAJZkvlVkj7z+DoApFyODoD97sOrvMoJqGIZdVpRtn0/QNA1jY2MghMDn86FYLM6ax5T1j5l8G9n+RgIyn3zySRw6dAg+nw833VRyvzBNE5qmwev1clN+0bIs6LrOhZ8n4CSbd5ucAsDCgA6xTDmdSLmfcss0TdddHhjYnOhGX+ZhPm4H+BglOMXFrpzyRJTTZeTU3wmGmgJZlkEIqas9E5pDyAKKAFlsDvFnKlnLyOmCxSCver29TX/yv6Bjw1V/3+PxQBRFUEohCAJ8Pt/cX+IQqqqCEGKbPWcjN2wh1SpfuSNHjuCBBx4AIQR33HFHhUKby+VsH2ReoOv6jOVm3YCu61yQ0xULItAFR1FOp9xXTk3TtCusuQ02J7oVFHUxwP1ZnmPUq5w24vjPJkseOiB78XggyuVppIIdf9MpaKQYQLm/acTbPLOZ1+uFrustVSPJ698GhCKljWIR1vf+s6rvKYpim/JHRkaaWkmqnSj3MWX5Sbu6umY0fzL/ypmUUdZ/6vHDHBgYwFe/+lWYpok3vvGN2LhxY8XnhUIBlmVxY0YH+DGlM+i6DlEUXVcIF69aipzg9IFs1n1y6iYhnIyOctp6uD/Lcwy3EvDzQEwBvlTcbKYsxykH/qa8Reo3QpZTZcppyNOce6soCkRRbKgaVDUgqh/kze9xduz8LejeHbN+RxAERKNRUErtNFHNLnXaDkwOftJ13a7SFI1Gp/0O2z8xMTHt56xU5Uzfnwmjo6P48pe/jHw+j1tuuQXXXXfdtMcVCgW7UAQPYO8LL6Z9XoKiPN09MKkz7htm0XWXFzcJ4WR0lNPWw/2nzDGqJWXFYrGCFDRq1ueBDAJ8mfW1gtMGn9/9bstbMBQre1jPs8rqZcS/SeS03mIA9YBcfQOwYo29bX3tn0GTM/tdhkIhiKJYkVi/kUpSbmCmqHxN0+wo/mAwOOV7LMXT6dOnpz0v29/X11d1WyYmJvClL30JqVQK1113HW655ZYZj+Wtrj2PyingfnsIIZBpJRl1uzAMT8ops252lNPWwf1ZnlNQSqsOdCk36Tfqu9ZRTqeHlneehcfrvs8Re048BUPVS5QzxTJ/Xrk5Q4LH44Fpmm0h70QQILzjAwAzZaeSsP79H0Gn6bderxeqqiKfz0/JIHC+ENS50kVlMhnouo5AIDCF5Cxbtgxerxejo6PTEtQXX3wRAHDppZdW1ZZcLocvf/nLGBsbw1VXXYU3vvGNsx5fKBS4Sn7PSg+7TQYZ2GKJBwKmigZIGUVox0JzNnQS8TvXvRjQIaczoBbSMTkYql6HbebszQMZBBz/V7cJmGlQ6Ho5OXW/24qiyM1zaiQYCgCyxTLlVGl8sBVFEbIst3UyI4uWgbz1D50dh/aBPvStimMEQUA4HIZlWTOatXknqHMRUwaWCmpy9SZJkrBlyxYAwP3331+hhj3++OMYGBjA8uXLsXjxYnv/9u3bcffdd+Phhx+uOFexWMRXvvIVnD17Fpdddhne9ra3zTn2UUpRLBa5Sn5fLBa5Copyi/RMRkA2IZT5nfKinPJg1gfcyx7g9nzcLvCRNIxDNEJO6wVPZnSAHxcDTau8Hzwop4IgNK3iUaNoJBgKmKScKo0P/O006ZeDXH8LcGQ/6DOlHJv0J/eDrlgHsulKACViJ4oiEonErO8YI6jxeByhUAiA+0nIgeqJKVBS4NLpNEKhEILBYEUFu5tvvhmHDh3C8ePHcdddd2H58uVIJBLo7++H3+/HHXfcUXGuTCaD4eFhpFKpiv0/+tGP0N/fb1c1+s53vjNtW97xjndUbBcKBXg8Hng8HtfVOKDSlM7DO81LyqSIn2B4TIGJkoXB7WfFo3LaScLfOnTI6QxwI8cpW7nz0vl4UQcLZSZ9xUMgCO6SU5b/lZfn1GjmgHLl1N8E5bTeYgCNghACvPNPQE8eA86WasNb//k5CH9+N3wr18Ln801rzp8OvBHUWogpQyaTgdfrRSAQQD6ft03Gsizjgx/8IB577DHs3LkTe/bsgaqquPLKK7Ft27aqg6FYijDLsrBjx8xBaNOR03A43CGnM8CyLC7cDOJRD46cVoBzU0Au665yCjhlQ3kAG/9ZGrd2glLKjdLfKnTI6QyopbOVT8KN+FKxzsaLbM+LOlgeDMWLagrw4YsLNBYMBaCiOpRPanzgb8T/tVEQrw/CB/4S1l1/BmgFIJeF9bk74b3rS7AikRnN+dOBF4JaDzFlmJiYQHd3N4LBYEXVJ0VRsG3bNmzbtm3Oc2zduhVbt26dsv8d73jHFOJZDUzThGmaXBAwgJ8gJAbTNG23Bzfngp7uMAhx7kkq3dwqb/WAF5cHwJmn3bAwXgzklI8lCIeoZVAoT7HRyADHSA8P5JQndVAr8OdvCvCjcEuS1FCaF62MnHoaJKeiKEIQBFezGJD5iyC8708Bcu63pCeQ+JuPIH30UM3PzG0f1EaIKVAiXoVCAV6vl5tJHeAn2TzgBEXxVhrTbYWwq68blDgptpKJ1CxHtwdumdKnQ6sLWswGXuaeVoKPp8whann45cSgkQmAJ+WUp7bwppzyVJyAENLwyr1QRk69UmP3l5fiBOSKa0De9zGAucqMjyL1tx8DHRms+VxuEdRGiSlDJpMBIaSh4iDNhq7rdpU1HsCTIsdLyiQ5EIBFnDakU9lZjm4PLMviRjEsN+u3GzzMy61Gh5zOADeUU558TnlqS7nPqdfnfpflyazfjLZoRtn9bVA55YWcAoBw9Q0Q3/MRZ0diFNY//RXomZM1n6vdBLVZxBRw8jDzVjYU4Cf5PU++jLwop4QQoIycFgru+5zyZM52UzntkNOLGPWS00aUAJ7M+h3ldGbwZNZvRluaadZXFAWWZbleTYYhcPNtiP7JXzo7xoZh/d2fg77wdM3nahdBbSYxZcjlchAEgZv8orz5eTJFzm1CyNoCuK+cAoAAZ7wtcrDgLPfzdBtutoWHebnVcP8Jc4p6yemFYtbniSgXtTKfU4/7XVYQBLtCiNtoinJqlpFTsXGzPi/EFABUVYXvljeCvO0PbRM/tDysL94N6+H/AeXMB7UVxBQA8vk8KKXcqKe8BUXxlKaIp7bIojPeGqb777WbauVkdHxOWwv3Z3pOUa/PaSPKKU+mdJ6IcvmYKMnuD0o8VfFqhnKqm84zLp+MaoUgCK4HQ5VDkiRIkoR8Pg/h1a+H8MFPA16nehv94bdhffnvQQu5ms7bKoLaKmIKwE7txVPye56CkHhK8M5TWyqGA+r+mOemn+dkdHxOW4umjAzHjh3D7t27ceTIERw+fBiJRAKyLOO///u/Z/zO+Pg47r//frz44osYHx+HKIro6+vDtddei61bt864oj548CAeeOABHDp0CIZhYOHChXjta1+LG264YcZrHTx4EM899xwopXjVq15l15eeDW6Y9XkihDwRZdNy7gcH4zU3xQmAxoOzLEpRxk3RiFWfp0AxYGpxArLpKgifugfWv94FDA+UDtr1NKw7PwTh7X8EctnVVZ+72WmmWklMGYrFIrxeLzf5PHlJmcTaAvChVjKrDA9tEcsGXAr35yUeldMLyaxfLBbxgx/8AE8++SRGR0cRCASwadMmvPWtb0VXV9eU4zVNwy9+8QsMDAxg6dKleNWrXtW0+9EUcvr9738fzz//fNXHDwwM4DOf+QzS6TR6e3uxefNmaJqGl156Cd/61rfw/PPP484775xC9J599ll87nOfA6UUa9euRTAYxN69e3Hfffehv78f7373u6dc6xe/+AX+7d/+zX6YP/3pT/HJT34SmzZtmrWNHZ9TfoiyVcZ1hAbNzs2AKIrcmK5Zn6l3EWFYlc+3UeUU4IecsmCbciWXzF8E4dP3wPr3e4C9O0s7E6Owvng3cPnVEO54P0h06iA8HZpFUNtBTAH+ks2XB/643Wd4CUJi4CVlUvlwwMNcwKPP6YWinBaLRXz2s5/FwYMHEY1G8bKXvQwjIyP41a9+hZ07d+L//t//i3nz5tnHFwoFfOpTn8Lp06ftfU8//TQ+9alPNeX5NIWcrl69GkuXLsWKFSuwYsUK/NEf/dGsx3/7299GOp3GLbfcgve85z32D5mYmMCdd96Jl156Cdu3b8eNN95ofyeTyeC+++6DZVn4sz/7M7z85S8HACSTSdx555340Y9+hM2bN2P9+vX2dzRNw9e//nVcd911+L3f+z27FvRXv/pV/Mu//MusbXRLOeVhAAD4IspWmbTntphACAEhxPXJlIG5GNT7nCaTU6mB6ls8BYoBTnGCyc+KqAEIH/4M6CPfA/3x/zp+I7uehnXgRZA3vBPk+ltApLn9IRslqO0ipoCjIPPi51ke+OP2+8RTEBIAbvxxK++H++91x6xfee1m4sEHH8TBgwexevVq/NVf/ZUdPPnII4/gG9/4Br70pS/hb//2b+3jH3nkESQSCdx5551YuXIldu3ahS984Qt48sknsWXLlobb05Tlxxve8Ab87u/+LjZv3oxIJDLn8QcOHAAAvOlNb6pg2OFwGDfffDMA4OjRoxXf+eUvf4lcLoeXvexlNjEFgEgkgne+850ASjerHGfOnEGhUMB73/tehEIhxONxvOMd78Dg4OCcE4hb5JSXiZ0vs77zt9ulS3lSlIHGVSfDnExOG2sLwI9yOlulKiKIEH7nDgh//c/AqnXOB4U86P/8O6xPvR/WYw+BFqovdVqrD2o7iSngJJvngfQAfKmVbIHHQ1sAfsYXqdxSxUGbeDTr89CWRmEYBn76058CAH7/93+/IqvH6173OixZsgQHDhzAsWPH7P1Hjx7F9ddfj/Xr18Pr9eKaa67BZZddhiNHjjSlTa68idUQuMkDPKvdfPXVU/3CrrjiCsiyjD179lSYq8LhMACHDAPASy+9BEVRmhq1Wj4Z8+Lg3yh4ImEmZ8opTxAEoaEFxCRuCrGB38eTcipJEgghcwZnkfmLIHzibpB3fQhQy8acxCjod78K6y9+H9ZD3wZNz14dp1aC2m5iyqDrun1v3AZvaiUvfp4AP/k85bL7QTlQTnkkhBeCWf+ll15CNptFb28vli1bNuVzJgiWu2+Gw2EcOXLEFufy+TxOnjxp865G4QqT2rhxI5544gk88MADU8z6P//5zyGKIl75yldWfOfkyVLi7OXLl085nyRJWLx4MY4ePWo75gJAV1cXrrjiCtxzzz3YtGkTdF3H3r178brXvW7OFXK1D5+pEeVtqRc8vXC8gFJaESTKg88pwAdpBxp3BbEmfVdooA/ylGKrlmIARBBAttwMuukq0B98C/S3v3RM/bkM6CP/A/qzB4D1V5QqT228CkSdWm2pWhO/W8QUKN0Pn8/Hhd8pT0FIAD/vNE+QZb7M+gydubK56O/vB4BpiSng8C52HADcdNNN+PSnP42Pf/zjWLp0KQ4dOoRCoTBrcHotcIWcvv3tb8exY8fw05/+FLt27cKyZcugaRoOHDiAYDCIP//zP8fChQvt43O5HLLZUum0WCw27TljsRiOHj2K0dFRm5wCwIc//GF8/etfx44dOyDLMt7whjfgLW95S9N+y2R/vwtNOXUb1iQLsdvzGC/3pVmYPB034jXRqIrbTLD3sJbANRKKgLzrQ6CvvwP0sR+CPvFTQDtn1teLwK6nQXc9DSpKwNpNJaK66lKgZz5ImY/2ZIJaDjeJKeDcDx4IIU/+gwydtlRCUcqUUw5SSfGEC2kxMzo6CgDTRuQDDu9ixwHAypUr8clPfhL/8z//gxdeeAFLly7Fe97znhk5Wq1whUlFo1H8zd/8Df75n/8Zu3fvxtDQEIDSy/jyl7+8gpgCpagwBo/HM+052f7yYwHA7/fjT/7kT5rZ/ApMnvwaJacXUodvBsxJATtu+5wy8PKcGp3AJv+MRk7Hw2Q6GfU8JxLtAnnLe0G3vQX0Vz8G/cXDQHrCOcA0gL07QPfuKJF7jxdYuBRk8XJg0XKQnj6M+AOILVyEQCQKC6VFgNvEFOiYRWcDL+80wE9bFKV8PnO/TbzclwsNjDfNxK+YD+pkfrV582Zs3ry5JW1yhZz29/fj7//+7yEIAj75yU9i7dq10DQNTz/9NL797W/jhRdewGc/+9mKtAW8otnklDe4PRhMVk4F9wUf7tBMs36jNMHt/sLQDJ9p4g+A3Pq7oK99I/DSbtCdT4HuehrITPI/1QrA0ZdAj75Uuua53SOTzhf7s79F4RWvdo2YloMH5ZQ9G17GTF58cQHn+bidwSWTdcgIpTqymSz8gakuLe0Cez489F8GN/pvs685Vx9zow+2/a4ahoHPfe5zGB8fx9///d/bPg5+vx/btm2DZVn4xje+ge9+97v46Ec/CgAVkWOapk0bzKRp2pRjG0E4HK7qgUzuJPPmzat7gGPn6u7uruv7zQR7+ePxuKvtSKd0AA4Z6O3tdnUCYdf2+/3w+XxzHN16EELg8Xjq7jNFJQ/AicDs6empuy089V/mUz6TmapmzO8DbrwF1DRQ3PUsJr7097DGJtPP2THx9S+ie8vNrt4fdl8CgUDTxspGoSgKF32Gvds8tIX5TLs9/sqyUrG9cNFCVxcTrP/6/f4ZVb52w43+2+xnwOYyxqMmo9n8qhq0PVr/8OHDOHv27IxRYddccw0AYP/+/fY+VVVtQjqT6sD2t/tlnryC4yWNzoWCyXFrbgtzvCiDDI22hzSslTrg7d40E1Y+i/z2R5H8pzuR/MdP10xMAcB39Q2upypiz4inZ8VTW3gBN/dkUju0grtBdJ3+25prMt40NjY27edu8Ku2L4HYj59JdWL7J0e5lufZmuyTahgGTp48CVmW0dfX15R2TkxMzLiKKMdkH4zBwcG6V3TxeByCIGBkpPaJr9lg/nFjY2OuBrloWuW1hwZHIMnuKaeSJKGnpwfZbLahcpXNwvz586FpGhKJRF3fT2Qqo9mHh4frVqbj8ThEUeSi/7J0TuPj4w0tGOnRl2D9/AfA7ucAY5bIf0KA3gUlv9PueYAagC8ahcfjLeXPXLwcyupLIYqiq33H4/Ggq6sLqVQKuVzOlTaUo6+vD/l8Hslk0u2m2OoXD/03EolAVVXX2yJLlWPBRCqJXD7rUmtKinJ3dzfS6bQdJO0m3Oq/fr+/aSmbgBK/AoDjx49P+znLb8qOawfaTk5Zkv6BgQHk8/kpJJUl358sk19xxRU4cOAAnn76aVx33XUVn+3cuRO6ruPyyy+3Sxa2C5PldcMwGjI38OLzxAvESQFQpkldJacMvDynRvMhTv6qRYF6s3XxqGbUc28opcC+nbB+cj9waO/0B3l9IBteBqy+FGTR8lJAlMcxeZUHPzHrSjNKnTYLPDwrnnIpA+77d5aDl/HFLLsfhCiuF3Dg5b5caFizZg1UVcXQ0BCOHz8+xar9zDPPACjxsHah7Tam1atXIxwOQ9M0fPWrX63IQzg+Po6vf/3rAKYm23/1q18Nn8+H559/3r5RQEnh/Na3vgWgVMmg3Zhs1uel5nqj4GWQnhwA5XamIl7uS7MwOflBI7+Opwo79SR4p5TCeu43sP7Px2D9899OJaZqAOQVr4bwoc9A+Nw3IfzRn0O4YRvIijUzEtNyN6R6K0k1EzwVSuCNnAJ8tYUH6EVnPiPu1OzhFhcSUZYkCbfccgsA4D//8z8rLMKPPPII+vv7sWbNGqxcubJ9bWrGSXbu3In777+/Yp9hGPj0pz9tb7/5zW/GFVdcAUVR8Id/+Ie499578etf/xp79+7F8uXLoes6Dh06hHw+j2XLluENb3hDxfkCgQA+8IEP4N5778XnPvc5rFu3DsFgEHv27EE2m8XWrVuxYcOGZvwcANV3PEJIRW3oRshpZ2CcCkEgIMRxfTInlzRyCTwNTI0pp5XfLfXB+s5nWRYIIVwoUGzRK8tyVe45dPA0rG99CTi4Z+qHK9ZAuOVNwPqXgcwRiDBXuqhqE/W3CsyyVE1xglaDJ6IM8PVOA3zMB0W9zCWG8ENOebg3Fxre9KY3Yc+ePTh48CA++tGPYs2aNRgdHcXhw4cRDAZbmpJzOjSFnKZSKRw+fLhiH6W0Yl8q5URcX3XVVbj77rvx8MMP48CBA9i1axckScL8+fNxzTXX4NZbb53WPH/11Vfjb//2b/HAAw/g8OHDMAwDCxYswGtf+1rceOONzfgpdUGW5aaQU57AUz5EQSQwjVJ7JqeWajd4GxQty2pIrZysnBoWINeZpaW84o/b74Gu66CUzmmGpLoO+tP7QX/8PWBymze8DMLW20FWravqmtXmMXWToLKxigdCyPotL0GkgiBwQdoBPsZdADCM8n7ifpt4uS/lcGNOaMV9UBQFf/3Xf40HH3wQv/nNb/Dcc8/B7/fj+uuvx1vf+ta2B5s3hZzecMMNNZesWrZsGT7ykY/UfK01a9bgU5/6VM3fayXKTYeNKqe8vHw8kVNRdKpJWh3ltAKmaTaUVkSe7NNr1X9/GcngwbTPygrPRk7pob2wvvlFYPBM5QebroLwhneCLFxa9fVqTbDvFkGVJGlKEKdb4Ek5ZYo/D20B+PF/1cvIKeFAOWXjLg/PiUe3lEahKAre+ta34q1vfavbTXEnCf/5gFrIRzk5aJSc8jCxA84Lx0N7BJGAeUOaLo9JrFwtD/cFKLWnkYTU0iRyqjdATuvx82wldF2HqqpTJnpKKejPHwS9/xtAeUnGSBeEt78f5PKrpznbzKi38lO7CaosyyCEcKMOsn7Cg3LKU1sAfkoBV7pRub8g54kQutkWXsSRVqJDTmdALeSjmeQU4GPVzJVyWvYoeFBOGyWEzUS5WlnPZDaZnBoXiHIKVPqdFoul/IxU00C/8QXQZ3/tHEgIyKteB3LbO0B8Uwt8zIZGS5K2k6AyFZkXcsqTWZ+ntgCl9rjtGgMAhlWunLo/F7Dn5Pb8CLjbFh6eRavRIaczoF7ltJHBjZELHshpeVvchlCW24iHuaNRP89molytrIecigKBQEoppIDGyCmPyilQMlUVi0XQsRFY990FnHQqYqGrB8L7PwmybHXN52+UmDK0i6DyFAwFlPoJpdT1sY61BeDDXAyU2sMWVG6i0s3H/TGvY9YvgZf5p5W48H9hnaiXnDYy8POkVvLUlvL3kIdofdM0uSFg5UFI9aJcPdUbuL+maYJSyk2t9GKxCMuy4PP5Ssn07/p4JTG9ZAOET3/OVWLK0I40U16vF7quczGxA6Vxkwd1EOBLOeWpLVYZOeVhLuDRrO/G+8TDs2g1+JhFOISbZn1BEFwfmHjyOVU8zotY1NwflEzT5CZlEhsYG3lOHpGgeI6Uag069eq67nqi7nLk83lIZ07A+ue/AfJORSTy6teD3P7eOVNDTYdmE1OGViqoXq8XgiAgnU435XyNghACSZK4qFIF8KWc8tSWch90cXLSaRfAk1m/43PaWrjPPDiF22Z9t8FTWzxepw1awf0BmyfzdTOUU4/kDAOa0dhAq+s6RFHk4t4AQObAHox+5sMOMZUkkHd/GMLb/pArYsrQKgVVVVVQSpHP55tyvkbR8X+dGTwFZ1llAYOy5P6ikyfl1E2izINo1Gpc+L+wTrgVrV/rtVsFntri9ZaRp7z7gxJPgT/NaEs5OS0YjSunALhQT+mZfhT/8VOwMudyLIsShD/+/yC88jV1na/VxJSh2QRVkiR4vV4UCgUu1DiAT/9XXu4Ne5d5aA8tI6feBspyNwvMWsUDOe0op62F+7Mrp+iQU37M+uXKaaGjnFaADdSNtMUrlSnTDZJTFsThNjmlg6dhfe4zACOmggjfRz4DsunKus7XLmLK0EyC6vf7AbS3EtVckGUZlFKuyCkPSiXAj3JqaAUQOG3wB2rLZNEK8OBKxdDxOW0t3GcenMJtn1O3wZVZ31emnBbcH5iaYUpvJhpNxO8Rm6ecGoZRVWWmVoLmsrC+8FkglSztIAKif/a3iN54S13nazcxZWgGQRUEAaqqolgsckMEgRI5ZX2FB/BETnlxMZgYHIZgOX0mHA262JoSeMn/CnRSSbUa7rMgTlHLwy+fiKup4z0TeCKEAD/5PD3lZn2OlFMeFhFASa2UJKnufuOTnd+Rb5CcAu4GRVFKYX39X4Dhs6UdhIC85yMwL78GoigiGKxtgnWLmDI0SlBDoRAIIVyppiwYiheyzGNxAh5M18ODCVDqpLOKRPwutqYEntwvOqmkWosL/xfWiVom+vIJo5FJgCezPlBaufPwEngrAqLcH7R5U04b9fP0y87vyBUbH/g1TYMoiq4QVPqLHwI7n7K3yevvgPCKVyGbzULXdQQCgapVZreJKUO9BNXr9UJVVRQKBW5KlgKldgHgIo8n4Lw3vLSHh2wtADAylodVRk79fvd9Tnm5N0DHrN9quM88OIUb5JQnX0aAT+WUUn7SSfFA3IEmkFPF+R1ZvTnkFHBISLtAj74E+v3/cnasuxzk1t+1NxOJBAAgGo3OeS5eiClDrQRVEASEw2FYloVkMtmeRlYJ1i94Icy8ZQ7gRR1MZCgsyyGn7X6fJ0MQBBBCuLg3gHsuBhcDMQU65HRG1EI8mklOearbzgiY2y+DJAPlHJkHv1NeiDvQDHLq/I5MsXFVolgswjTNtk5mNJOC9ZV/cEqIRbog/MHHQcreJcMwkMlkIMvyrOZ93ogpQy0ENRQKQRRFTExMcDOZM3g8HrtAAg+QZRmmaXLTHl7UwbQmVCinPJBTwH1fXAa3FhG88INW4+L4lXWAJVmvBuWThK7rDfud8kJ6eEmZRAiZFBTl/iTCU5UoSikMw7DT89SKCuW0CeQUKKmnsiy37R7R7/8XkBgtbYhiqSRpMDzluHQ6bZv3pyPzvBJThmoIKjPn5/N5bvKaMiiKAkEQuFFNgRI55Uk1JYRwQcCypgRKnQBfj8uppHgqTgC4F0TntljULnTI6SyolpT5fL6KYxtRT3kyF/PkZuApqxJVyLs/OOm6bgd28ABd1+sOigpUKKfNubeMfLRjQqPHDoI++Zi9Td74eyAr1854PDPvRyKRivvFOzFlmI2giqJom/MnJiZcbOX04M2kz94ZXsgpTy4GxUkFJHkhpzwQd8A9sz4P83E7wAcL4hTVdgJCiJ1LEACy2Wzd1+wop9NDDZSR/zQf5BRA3Wpls9GIaT9YRk7TWvOUU0ppy02B1DJhffsrzo4FS0Buum3W7xiGgXQ6DVmWEYvFAJw/xJRhOoIqCAK6urogiiKSySQ3ClM5vF4vDMNoKOVeM8FbMQBeyKmRngAEZywRBHcCHMvBk1nfTaLMCz9oNdxnHRzDDb/T8rrtboMn5TQQKlP3Uu5PujxVQgIaS34f8Tr3NlloDmmglELTNHg8npYubuhvHgP6j9jbwtvfD1JFf81kMshkMvB4POjp6TmviCnDZILa3d0NSZKQTCa5USbLIcsyJEniqm28RerLsgzLslwn72cPH4evzN/U5wu4PifxZNZ3kyjzIBa1AxfHr6wTtZCyCzFinyflNBAsU05T7q+cTdOEaZrckNNGyHLY65jvUpoJ02pOwFkulwMhBKramsoyNJsGffAb9ja56nqQ1eur/n4qlbLdIUzTPK+IKQOlFOPj43aVsEKhgFwu53azpgXrBzy1j7dgKEVRXCemAHC0fwQey4mdCAYbK6HbDAiCUMpjzMGzcpMo88AN2gH3WQfHcIOcamFQPQAApUhJREFU8pRDkyeiHCxTTrMZC1aTCFQjcDPZ/GSwoKh6/MIiPufeWrQ5EftAya/QNM3WkdOffB/IpEsbHh/IW95T0/fD4bBNTkRRRFdXl+vqUK0QBAGxWMwOovF6vQ2VOm0VCCHw+XwoFotckC+g1CbegqEEQeCiPf1JCmo5i4hw2P0+xUuKLaCjnLYDF8evrBO1dIJyn9NmkFMeOiCltOHSmM2CPyCA8QZKSwTVbfAWFFUoFCCKYs3t8UkCZMEhZclC8wbcfD4PSZKa7ptL8znQX//M3ia3/i5IpKvq75f7mA4NDdkm/ng8zs3znAuKoiAej0OWZUxMTGB4eLihUqetBAsa5Uk19Xg8IIRw42bAk4vBmBWGYTrPqtbKaq2AJEncLGw6ymnr4T4D4hgXu1kfKAWP8DBZCyKBP1Dud+q+aZ83v1M2ydYahEQIaYnfKVAKDqSUNp0s0e0/B/LnJk+fH+TGrVV/d7rgp1QqhVQqBUmS0N3dzR25KwchBOFwGPF4HIIgIJFI2Pe5kVKnrYTf74dlWVyltuItcwAvwVBWJoWc0gWjTDl1uy8JggBBELghpx3ltPW4OH5lnailE5SvLC8U5RQokVM2MLgNf9BR93gKiuIlYp8lNq8nQj6mOguQsVzzJgDTNFEoFODxeJq24KKmCfqLh+1tct1rQbzVuQ7MFpWfyWQwOjoKwzAQCoW4VFEVRUF3dzf8fj80TcPIyEgF4eORoHo8HsiyjFwu53rp4XJ4vV7uigEw9xw3kTh6DD5JhWnyQ07Ze+j2vWEQRRGUulNKmxfhqtVwn3FwjFo6QblZv1Ao1P0SsSpRvHRA9jt4mKSDIb6UUxZIwYtyCpT6Hkt0XgviqvMbRrLNVW6y2SwIIU2b4OiOJ4HxkdKGKIK86nVVfa+adFG6rmNkZMRONcWLijpZLU0mkxgbG5tWueGNoAYCAVBKG0qx12ywd6SRginNBi/+r8f6hxCCCMNynpfbfYi3HKduJeDnoWJju9Ahp7OgXp9ToLFcpzxVH2LklIf2lKeTSnOgnAJO8nteUK9pv9vfOnJaLBZRLBahqmrD/YhSCvrzH9jb5MotILH4nN+rNY9pOp2uUFFZuql2TwyCICAQCNjXZ2rpXL6bvBBURVHg8XiQz+e5IRYAfyZ9URQhiiIf5HQ0hzClFdWh3CanPCqnHZN+a3Hx/NI6Ue1kKopiRVRyo6Z9XggPewF5aE8gVFZmM21xYSIsFosQBIGL+wPUn/y+2++0f6SJZn2GVCoFQkjjgRVnTlTkNSWvecOcX6k3wT5TUVnbw+Ewent7EQqFWv68ZVlGOBxGT08PQqEQKKWzqqXTgQeCytqeTqfbfu3Z4PV6YZomF2QQ4CsY6pTmg0gd0i4IAnw+n4stKs0/PLg8AO76v/IgErULfMyoHEMQhKong0AgYCsajQzGLCWQW+XRJreFUsoF+QoEnRfTMCjyOQuq392XtTwoioeBk1KKYrFoRyJXS+DLldPRJiunQGnSLRQKUFUVmUym7ntFdzzlbCxbDbJ4+azHN6PyUyaTQTabhc/nQyAQsP8Vi0Xk83kUi8WGSQ5La6QoCnw+XwVZyWQydSt8jKDG43GEQiH797QDXq8XiqIgk8lwpZqyjBY8uRlwEwyVGMOorw+LzEqTvtumZJaLmAe4qeJeTMqp+4yDc9RiaolGoxgeHgYAjI2N1X3Ncj9PHlbSvCi5skLgDwh2GqnEmMkNOVUUhZtIZBaA5PF4qiY13WU+p8NZHZTSpk9IqVQKXq8XoVCobqJIdznklFxxzazHNrMkKaUUuVwOuVwOiqJAVVV4vV6Ew2H7c8MwoOs6dF1HsViEaZoViwN2P1n6MVmWbUJa/n5ZloVMJoNcLteUCdAtghoKhezfwhN4M+kD/ARDnXlxLzzKcujaaXsf6zNuQpIkbvyD3SSnHeW0Axu1kLKuLifP4ujoaN3X5I2c1pvcvRWIdIkOOR01sGCxu5HypmlydX+A0qQbDodrIqfzgg45LZoUY3mjIkiqGTAMA7lcDqqqQlGUmvs2HTwDnOm3t2cjp80kppPBfGgJIVAUxSaZsizPWnBg/vz50+5n96Wc2DYb7SaoqqpCkiSk02nXrT+T4fV6YVkWN2SHEAKPx8PFWP/isWH0+tZAN1L2vmg06mKLSoSMEOI6cWdwk5zyIBK1CxfPL60TtXSGeNwJzGgWOeUBhmHA6/W65gRejlhcwpn+klo5PsqHmUfTNPj9fm6SRDNfOp/Ph4mJiaq+o8oiol4RiXMJ+AdSxaaTU6Dk7uLz+RAKhWp+R+iup52NhUtBevqmPa6VxLSiPZRC07QKkiMIgk1UWWQt89crFAp2+hn2jHRdb5vvdLsIKvMtNk2TO9VUFEUoisKVaspLMQBqmXgxK+MSVca46YwbbpNTHoOh2DvcbvDCCdqBi8eBoU7US06z2WzdZl5mDuRFwmeDAg8pk6Jdzj1JJU2YhvtBUfVGyLcSuVyu5kCGvpCjQp9JtUbFMU0T2WwWiqLUHKBDd/7W/ptcPr1q2i5iOhOYIpfJZJBKpTAxMQHTNGGaJpLJJCYmJpBKpZDNZlEsFtse1NeOIKlQKARRFJFOp7kIWiyHqqoghHBXqQpw383APHYYJ8Mr4SECV8opm3d4Iadu+r/ywgnagQ45nQO15jotJyiNqqe8rJKYuYkHchoMixClku8epUAy4b56qmla3cnvWwWW8LyWuvYL2kBOgZLvqa7rCAaDVfdxmk4BJw7b29OZ9N0mpucLWklQPR6P/Qx4IoAMqqrCMAxuTPpAaVGr67rrVqnDe15CSArCsnSYZdWheCCnlFLXg8UY3LKQEUI65LQDB8zfpRoQQirU00aCongJQgKciH0eyKkgEERjzguaGOVjNa1pmm3K5QGUUuTzeXg8nqr7UV/QIacD6db6vyWTSQBAJBKp7gv9DjFFMAwsWFLxcYeY1oZWEFRCCCKRCCzLqtqdpJ1gVcp4Is2yLEMURddVUwB4YSCDHiJDNx3VVJKkxtO/NQiWCYUHFd5N/1de+EC7wMdMyjnc8jvlaaWk6zoX5BQoBUUxjI/xQU4LhYId2MAL2CRcrXparpyemmgtOdV1vSbzPj3h5DbF0lUVC8YOMa0PzSaozJyfSqVcVwGng6qqdtYFXsBL5gCaTmE3YuglMnTDWVhEIhFX00ixzBY8qaZAJxiqHeiQ0yrQCYoqkQlRFLlQBmNx554kx0wuVtT1Jr9vJVj+TeZnNxeWRBxiPZzVkS22lmDUYt6n5Yn3l6y0/+4Q08bQLILKuzlfFEV4vV7bBYcX8FIMILf3BZwILUF0knLKg0kfcD//K0OHnLYP7jON8wD1ktOxsbG6B0IeySlQyufpNsqDorQCRS7r/mRjWZad/J4nZLPZqgOjevwy/LIzJJxItN4vj5n3o9Ho7AS6TDklS1cB6BDTZqFRgioIAtfmfAB26VmeEu+LoghZll1XTQFg/8GTiIqlMaJcOe2Q00p0yGn70CGnVaCWThGLxexJlkXo1oPyykM8gKf2KB4B/qDTdRMcpZQSBIErgprP52FZFvx+/5zHEkKwLOq0/Vii9ZOmrutIp9OQZXlG/1OaHAeSZf7bS1Z0iGmTUS9BJYQgFotBFEUkk0kuzfmEEKiqCl3XuQuEAuB6m6hl4oVxE72kJDzwpJwyMYQXcirLMizLckV975DTDqaglk4hSVLFJFuvaZ9VC+GBDAKw8zHy0p5Yl/NMRof58TsF+EopxXzsZFmuijQvizptP94G5RSAXQ3J5/NNH3zRf9T5O9KFyJJlHWLaAtRDUMPhMBRFQTqd5kIBnA4+nw+CIHClmgKlcYLlynUT1v7deCp8CeYTBZRa3KWR4iUYCoCr/q+8xJ+0Cx1yWgVq7RTN8jvVdR2SJLle15iBp6Co+DyHnA6fbV8i89lgGIZdsIAnZLNZUEqrUk/brZwyJJNJFItFBIPBKfePjg/bf0tLlneIaQtRC0ENBAJQVRX5fB7pdLqNrawNgUAAlmVxU14YgF1djPmqu4kDz+xC2htFL0r+phSm3UY3ySkLhuKhchZQIqaCILjSHkEQuIj3aCcurl9bJ2rtGM0kp+wF5QE8BUX1zJOAc5xdK1BMcJDvFCipp8yXjBeYpol8Pg+v1zunz/DymEMMT01oKJrtM1+Nj4/DNE1EIpHKPp9M2H8q8d4OMW0xqiGoHo8HwWAQuq7X7brUDrAyqmyBxgu4qQqVz+HXSRELiQcCIdB0x30mFou5Oo7x5m/qZnt44QDthPss4zyBGxH7PAUhAU4yfh7ao3iECtP+8NmOaX82sGo9rGzlTFgU9kARS6zfsICjY+2bPC3Lwvj4OAgh6OrqciwWKYec0mC4Q0zbgNkIqizLiEaj9vPiifSVg+cyqrykkNKffxK/7VqPhaRkMSmWkdOenh63mgWAT39ToENO24UOOa0Stawgy8lpJpOpewDiKQgJcMgpLwE/3fMrTfs8oFgswjTNmsqGtgOmaSKXy0FRlFmJsyQQrI47bd8/0l5TKFPiRFFEV1cXBEGAlHOIRcHDF+m/kDEdQZUkCV1dXSCEIJFIcBkAxeD3+yGKIjKZDFcEmhACr9eLYrHoelqrF3cdRFr2Y9G5YCjN4IecejweOwsKD1AUBZZludLneeEA7USHnFaJWjpHIBCoIHD1qqeWZXEVFGWaJgzD4EI5BYDeMnKaGDOhae6nlAJKye8lSeLmPjGk02lYljVnxZe1ZeT0QJvJKVDKMJBMJiFJUmmCTCWdD0PuBmhcbJhMUOPxOAghGB8f54Y0TAdCCAKBAAzD4C4QigVouZ0Plo4MYrseRTdk+IgISi0UDcdK4TY5VRSFqz7mZjAULxygneiQ0ypRS+cghFS82GfOnKn7urwFRRWLRW7KdIYiIrw+px0jnJj22aRTTQBSO2FZFrLZLGRZnrVq1Loeh5y+NJKD5YLqlMvl7NRcZsJRc0i4Q07bDUopkskkKKUQBAH5fN71CPO5EAgEIAgCl4FaqqpyEaBVeOoJPBNfj0VCSUjRzRQoLY2hk0txtxuKooAQwg05dTMYCuiQ0w5mQa0EccGCBfbfp0+frvu6vAVFsUmJB9M+IaQUGHUOvJj2TdOEpmnwer1ckPhyZDIZmKY5q3p6SdzHYs2QLlo4k2r/gBwOh+HxeKDrOqwJR81BINz2tlzskGUZXV1dAEoZKVRVbbjUaSshCAICgQB0XXedAE6GLMtQFAX5fN5VVwNKKZ7ffxIFyYNF5/xNeQqGYlYnXhZBbvub8iJOtRN8zZwcgxBS08u6cOFC++/BwcG6K0rw6nfKi8m6p6+MnA4aoBYfvmW5XA6EEO58TymlyGQyEEVxRmXXr4gVpUz3D7d3gi9PsD8yMlLxmajw8R5cLPB4PLaP6fj4OEZGRhouddpqBINBEEKQSqXmPrjNYBYLt036OHIA271L4YOAblJ6p3gKhmL+pp1gKH7m/najQ05rQC2dpLe31z7eNE2cPXu2rmvyFrHP/E55UE4BIN4rg5zrxXqRIjHOR4AGq8w0m/ncLWSzWRiGYU/i0+HSMtP+C4Pt89mbtvKT4LQxGgpxlwnhQoXf70csFgNQKsXMcnI2Uuq01RBFEaqqQtM0blQ3BrZY1XXdddKVeerX2NG1FguJM6/olpMFw21yypu/KasM5UYwFC9zf7vRIac1oBZyKooi5s+fb2/Xa9pnLwRPq6disWj74LgNWSboijvq6dAAHyttAHZlJh4Hl3Q6DUEQZjTvXz7fIR0vns3CbIMiPWNJUuIUwaCmiVgsNmdQVweNIRKJIBwOwzAMjIyMVBAFnglqKBTiVjXlpVIVTU/g8f4MDEHCYlJa6FFqQdP5IKe8+ZsCpbm/EwzVXrjPLs4j1NpJFi1aZP/diN+ppmncBCEBfPmdApWm/YGTfFSLAmqrzNRu5PN5FItF+P3+afv1+l4V0jnFMqtbODTaWtP+jMQUAMr6fWJszK4kFY1GL0pfrFZCEATE43GoqopCoYDR0dFp1SIeCarX64XP50M+n3ddmZwOfr+fi0Ao85c/wo/nXQ0ZxPY31Y0JWJYTDNXd3e1a+3j0N3UzGIqXeJN2gw+2c56gVsfkcr/ToaGhujs3b36evLVnwWKnHbmshfFRPkz75YFRPNZFZpV9IpHIlM98slARtb/zbOvUnlmJKVBBTi3TwNjYGPL5PHw+H+LxOJf39nyELMvo7u6GoihIp9NzJtjniaAKgoBwOAzTNDExMeFaO2aCoiiQZRm5XM7dQCitgB07D+GsGsdS4oV0bj7TqVMiOB6Pu0qIePM3ZSKMG2SZFwulG7g4f3WdqDUoig30QMk8PzAwUNd12UvBCxlkfqe8+P55fQLivc5geqafH3NQNpsFIYRL9dQwDKTTaciyPK2ZfHOf0+adA60hp3MSU6CCnMKyQClFIpFAKpWyc6HyeH/PJ7AcpoIgIJFIVJ2CiReCGg6HIYoiJiYmXE9sPx0CgQAope6b9H/zGB6JXwEAWEmc8ZsKDjktzzTTbhBCuPM3VRQFlFJX2nSxmvSBDjmtGbV0FkEQKl70evOdmqYJ0zS5MaMDTg15XkwOC5c4xH3glA7T5MO0r2kadF2HqqpcmqAzmQyKxSICgcCUvn1Fmd/pkfECkoXm5pGtipgCgFTWrqKjXmQyGYyNjcE0TYTD4Y6KWgeYWspSL42MjNRsdnaboJab890uBzodRFGEx+NBoVBwtaIWNU2c+PVvsDu2GioE9J0LhqKUIpUZtI8rt/i1Gx6PB4QQrp6jm2S5Q047qBq1dpbyF/1C8jvlrYb8/IUyGC/Ri5SbnKdAST0VBIG7tFIMM5n3F4UVdKnO4uPZ082rT141MQWASMz+k5Yl5AdKLiYjIyPIZDKQZbmjotYAppZKkoRUKoXR0dG6U965RVB5N+cDJV9TQoj7qunzv8GPA2sBACuJz14sS540NM1ZkPT19bnSPsCZT3ghp277m/JiLXUDfDCd8wiNkNPh4eG6/VZ48/NkdaF5IaeSTDBvgfNsTvfzQ05ZWikegkamw0zmfUIIrlnkbD/Z35wI6JqIKQDEyirVjI9M+ZhSilQqNUVFvZhVh9ng8XimqKWZTOMLDzcIKu/mfEIIVFWFruuumqoppZh49Md4ovecSV9wxm3Z57xT8Xjc1THd6/XacwsPcNPfFLh4g6GADjmtGbUGRZW/7JTSuk37vPmdAqXVraIo3Ki5C8pM+8MDOopFPgY45msmSRKXeU+Bmc37r1zskNPdQzlMNGjar5mYAiCxssjhacgpw2QVtbu7G9Fo9KIe4MuhKAq6urrQ1dUFURQbVkunQzsJKu/mfMApo9oM8t8QDryAR+k8FEUZMUiIEecdzxf5MOmzuYSnZ+mmv+nFHAwFdMhpzWAO27Uc34xSprz6nQL8mPa750nweEoLB8sCzp7iRz2tpmyo25jOvH9Jtw9dvhK5syjw9Kn6J9l6iCkAoIyc0lnIKeCoqMPDw3ZEf3d3NyKRyEU70EuShFgshng8DkVRkM1mMTw83DLC1A6Cej6Y83kqo1r86YP4yYJrAFSqppGYgKEhJ1DXzWAo3kz6gLv+pjzN9W7g4hytG0StneZCzndKKeWGnAoCQd/ictM+PxGf1ZQNdRvl5v1wuFTDXiAEryhTT39zsj7Tft3EFACpMOuPVvUd0zSRSCTsBPKqqqK3txehUIib96fVkCQJkUgE3d3d8Hq9yOfzGB4ebosJvNUENRqNcm3OB/gpo0qPH8bTYxTjnggIgBXE8X0Pd+UqiLPb5JRlguEBHX9Td3FxjNJNRq2dptxUMjo6Wvcqmje/U2buYBGWPKA8an98xEQuy0fOU6C6sqFuI5PJoFAowO/32y4I1y5xyOneoVzNUfuNEFMAFcopxkZqyhOp6zrGxsYwNjYGXdcRCATQ29uLaDTKzXvUbHg8HsRiMfT09EBVVdvdIZFItDVavFUENRQKwePxIJvNcqWylYOXMqqUUujf/y/875JXAwDmEwX+cxXXCAEMDNnHuulvKkkSJEni6nm67W/aUU47qBmyLNdELqLRaIWvYb3qKa9+p4QQbl6kcEyEP+h06/6j/KingFM2lNfgKABIJBIwDAPhcBiKouCSuM+O2rcosP1E9UpQw8QUALp6nb+1fNXqaTk0TcPo6KhdI54l8O/u7rajqc9nsD7V09ODrq4ueDwe5PN5jIyM2MTcDTSboKqqikAgAE3TuDXnAxyVUX3hGWyfkHHKPw8AsLZMNe2eJ1WY9N30N+XVpN/xN3UPF/evrxP1+J2Wm/aPHj1a13U7fqdzgxCCJcudZ3PyWBGmwUfOUwB2aUW/38/t4EMptasDxWIxyJKE65eG7M8fPTJRlXrZFGIKgARDQJdT65seO1j3uTRNw/j4OIaHh5HNZiGKIsLhMObNm4doNGrXPz8fwFxEurq6bJcFQgjS6TSGhoaQSCS4qLLTLIKqKArC4TAMw0AikWhyK5sHWZa5KKNKDR3a97+B7y59DQDADwFLy/xNFy9XKoQSt036lmVxU7IU6Pibuo3zYxTmELV2npUrV9p/Hz9+vG6/mkKhAFmWuUk2bpomisUiN+QUABYtVyCeC9AuapQr31MASKVSEASB6+AoRgAIIYjFYnjNyoj9Wf+EhkNjsysczSKmDGTFGmejAXLKYBgGJiYmMDg4iEQiYffhaDSK3t5exONxBAIB7iL9Wbqv7u5u9Pb22uo2I91DQ0NIp9Pc+WE2SlBFUUQ0GrUXTrz9vnKEQiFQSquustUq0F/9BI9JizDk6wIArBdUEJQsBKpfAIQx28VscuBuOyGKot2HeYHH43E1cwBP1lG30CGndaLWzrNkyRI7RY+u6zhx4kRd1+VNqQRKaqAgCNy0SVGECt/T44c1V+tZTwbzQ1NVlZtFxnTQNA2pVAqyLGP9knlY3+u4pvz8SHLG7zWbmAIAljvklB57qTnnPId8Po+xsTGbqBYKBUiShFAohJ6eHvT09CAajSIQCLTVv1oQBHg8HgQCAcRiMfT29qK7uxvBYBCCICCXy2F8fByDg4MYHx/nyiQ6HeolqGyBJIoikskkNwEz08Hj8dguFW62k2bTyP/oftvXVARwqeQEYi5dpeBE/wl7u6+vz7XxmxUnyeVyrlx/OrjtZtBRTgG+ZIHzCMzvtFrSI0kSli9fjoMHS6rPkSNHKtTUaqFpmp383u2KIwz5fB6hUAg+n4+bCXLZao/tb5qesDA2bCDey09S9nQ6jXg8jlAoxLWJMpvNQpZlqKqK29bPw96hYwBKfqe/v7kHqlxJrltCTAGQ5ZfAftNOHgXVdZAmJ9mnlCKfz9tqEiMaHo/HzqnJYBgGdF2HYRi2u41lWfb/1UIURQiCUPG/LMtTrCOUUui6jlwuh0KhwIW5vh4wgsr6PoA5U1pFIhHIsoxUKsXN+DITgsEgH6rpI9/Dj2ObkPSU7vEawQfBOlcRSiJYvMyDZ3Yct49ftmyZK+0ESuTUNE2ulFOv1wtd110pN9vxNy2hQ07rBPM7reWFWrlypU1OmWm/HrOhpmnwer01keNWgvkK8dSmYEhE9zwJI4Ml9eLYYY0rclosFlEoFODz+ZDJZLgmG8lkEpIkYevGRfiX3/QjrZnQTIonjqewdXXUPq5VxBQAsGgpICuAXgQMAzh5FCg39bcA5ZHWhBCbNLJ/rL9PBqUUlmWBUgpKqf2Od3d32+cihMyomjMiykgo+3ehoBaCGggEbP9N1xPZzwGv1wtFUeycxm6BDg0gvf0XePBln7D3XekNAue8mxYulVHQMhgddQIL3SKnkiRBlmVuhBYA9sLQrdy0HdW0hA49bwC1dqJmmvYJIdyY0YGSekoI4ap+/LLVzvMZOmMgm+EnrRRQ8j2llHLte8owPj4OiQC3Xjrf3vezI0l7IdJSYgqASDKwZIW93UhQVD1gUbvZbBbJZBIjIyMYHBzE8PAwxsbGkEgkkEql7FRchmFMWaQxIksphWEYNuGamJhAIpHA6OgohoeHcfbsWYyOjmJiYgK5XO6CIqYM1Zj4VVVFKBSCrut2gQieEQqFYFmW6yTauv+/8IO+VyIrl9xwlkkeSEVnql+22oPjxx3VNBKJIBqNTjlPO8Cy2HRM+g46/qYldMhpA6i1EzHTPsPhw4frui5vye+B0otsWRZX5LRnnoRA0FGnThzmKzCKERSv18v9atmyLIyNjeG2jQ45PZ7QsHso13JiykBWrLX/pnueb9l1qgUjmZqm2UQzlUohkUhgbGwMIyMjGBkZgWEYMAwDw8PD9r5yQpvNZpHP51EsFrn2p2w2ZiOoPp/PjswfGxvjwhozG1RVhSRJyGQyrgZr0YN7kdi3Fz9a+Ep73w2BsP13z/zSmFhOTpcuXdrOJlbA5/PZLjK8gBUD6ETqu4sOOW0AteY7BSqj9k+cOFHXZGRZFnRd56oTU0pRKBTg8Xi4CfIhhGDpKmcBcep4EYbO1yTHIqvD4TD3uTYNw0AYBVyzNGbv++HBibYQUwAgl13lbBzcA5rmN89lB9VhOoLq9XoRiURgmibGxsa4jswHSn7DoVAIpmm6ap6mehHWf38J3116MzSxNO71eWSImTLVdJUHuq5XpJByy6SvKIqr5vPpwHy+3fJ/7fibOujchQZQT/L5Zpr2WTQvL2CDDE/q6aKlCiS5RPp0neLUCb7UU9M0kUql7Ohw3qHrOm5bE7G3nz+dwu5Toy0npgBKEfvhc8TYskBfeKb11+yg5ZhMUKPRqK3Uu+m7WS3C4TAEQUAymXRV4aUPfRsHswSPzncWcduizkIyEBLQPU/CyZMn7fuqKAr6+vra3laAT5M+m087Ufruo0NOG0StnalZpn328vDUmTVNg2maXJFTSSZYvMxRT48e1GCZfKmnuVwOmqbB7/efF/5Ga2Iy1vQ4aWm+8Ux/W65LBAHkimvsbbrjybZct4PWg1KKTCYDSikIIcjn8+cFMVVV1c6c4mqZ0qMvQX/0h/jy6jeDktK0viLkgZhwrDHLVpXSoJWb9JcsWeKapcvr9aJYLHL1nL1eLyilrj1Lnlz13EaHnDaIejrTZNN+Pf42zI+Nt87MigTITU7z0wiWrfaAWczzWQsnj/OlngKliHjLshCJRLg370ciEbz7ascU+JsTExhv01hONl/rbLy0GzTrbsqeDpoDn8+HSCRiuywFAgGuS/wCleZ8N8uU0qIG67/+GQ8vuBb9Accn/A1dXWC8T/EQLFxaKsdZbq1zy6TPKrHxZNJnllAW0+HG9c8HcaJd6JDTBsF8VGrBZNN+f399yhNLFs5TFRtmomEmGx6g+gUsLitpeviABpMz9fR8Me+z4KdrFgUxL1DqwyYFfnwk3Z6BddVaIHguwMM0QV94tvXX7KClKCemo6OjTSl12g5EIhFuzPlDyZxdphQAblkaRnrA8dVducYDSSIYHBy0x2hCiGvBUKqq2nmFeQErsOGWSX+m1HQXKzrktAmoVb1stmmfJzO6rusoFovw+XxcvWir1nnB/MwLOQsnj/KnnvJu3i+Pyp9IJvCGtY4/2w/2DECX/S1X8okgVpr2n9/e0ut10Fr4/X5Eo1GYponR0VGYptlwqdN2QFVVeDwe9835Rw7AevQH+MrqN6F4Lggq7BXxciUE65xq6vESLFlZcv9iebYBYMGCBa5Y3iRJsqto8RTs5vP57MBeN8CbFdRtdMhpE+CWaZ+lnuGJnAIlkiUIAlft8qmT1dMCTIMv9RTg17w/XbqoVy0Po8tXUu11k+IrTx5DLBZred5W8jInTQ727QIdGmjp9TpoDSKRCMLhMHRdt4kpA88ElZnzDcNw15yvabC+9s94snsjXohdYu9/3/oenD3hzCcr13ohSQSWZVUIIatXr25rexl4DIRiecOLxaJrhJmn+BEe0CGnDYJSOqXUYDVolmk/n89DkiSulDa2Ivb7/XMf3EasWucFe0xageLEUX7K5THwaN6fKY+pRxLwto1xe/sn+4fw0tkEgsEgotFo68j16vXAvIWlvykF/cXDrblOBy2BIAiIx+NQVRWFQgGjo6PTEgJeCSoz509MTLhrzv/Bt5AZT+A/V/6Ove/y+X7E0jLY7fSqApasKM0Np06dss3ogiDUVT67GVBV1baw8QJm6XOLMHs8nk4KqUno3I0GwSbgRk37Bw4cqOv6PKZvYr5EsixzRZq9PgFLVjir0yMHNBgcqqc8mffnSrD/6uVhLAyV2mhR4Au/OoxcLgefz4d4PN6SSGAiCCA3ORMy/e0vQHN8l7bsoARZltHd3Q1FUZBOpzE+Pj4rweONoHJjzj+0D/QXP8Q3l29FUilZKhSR4L2XdlcEfK5a64EoluaocpP+0qVLXTEjs0AonlRToGPS5xEdctok1NO5LrnEMcWcOHEC6XTtkcesugZP5BSAnYyap8AoAFi51mOrp0WN4sRh/tRTgA/zfjWVn0SB4J2buu3tZ09n8NtDA7b6G4/HW0KwydU3Av5z7gNaAXT7z5t+jQ6aC7ZgEQQBiUSi6vGOF4LKjTk/lYD17/dgf2gJHu272t7/tg1xJPst0HOqqU8V7DR6uq7j6NGj9rHlc0874ff7YVkWV+RUFEV4PB4UCgXXlPCOSX8qOuS0SVAUpWYSsWTJEtt0SynFnj176ro28/HkafXFyjqylTIv8HgFLF1Vpp6+pEHnrGoU4L55v5aSpFcvCmB1l9P3vvHCiK2KEULQ1dXV9EUK8XhArr/F3qa/fASUo3yJHVSCuXqwiPxao7R5IKg8mPOpYcD6yj8gncnh82vvsPcvCXtw06JwRZGRVes8EM6ppsePH7fjGmRZdiWFFLOk5fN5rsrRMmHHrcwBLOMOT/eEB/DDGs5z1FMtihCCjRs32tv79u2rq5wpe9l5VE8JIdz5nq44l1YFAPQixfFDfKqn5eb9di48aiGmQKkfv+tyRz09MJLHb0+moWmaHejCgl+aCXLjNkA8l0ZtfBR052+bev4OGgchxA6SKxaLGBkZqbuOupsENRAI8GHO//7XQA/twxfXvAWj3igAQCTAh66eh2P7NTB+owYELCorPnLo0CH775UrV7qSfpDNA26WeJ0OPp8PlmW5btLnKQCWB3TIaRNRD4FYu3at7ZeXz+crTC/VwrIsFItF7vKkFQoFGIbBnWnf4xGwdJUzcB85UEA+x09Kk3IkEgmb3LWjsEGtxJRhQ68fm/ucRch/7BhGTjdhGAZGRkZskt3d3d2030EiXSBXOpH79Kf3g3KUmuZih8fjQU9PD7xeL3K53IyBT7XADYLq9XoRCoWg67qr5nzr6cdBf/EwfrLgFXg2vt7e/87LutFNZJzud0j/6nVeCEJpLigUChWJ992I0mfZWzRNq0uAaRUkSYIsy67mW+XJ4skTOuS0iaink/l8vorBohHTPiGEO/U0l8tBFEXu2rVijQeKpzR4myaw/0V+kkGXw7Is2zwei8Va6iJRLzFl+IPNvZDPTYjjeQPffnEUQIlQjI2NVfihNivdFLnpNmfj5DHQp3/VlPN2UD8IIQiHw+jq6gIhBMlkEslksmnnbydBlSQJkUgEpmnOGbzVStCTx0C/+UUcC/Thv1a8zt5/+Xw/blsTxZ4dzvgVDItYsMRZAB45csReFKiqikWLFrWv4efg9/tBCOFSNQXcM+kLguB60Cuv6JDTJkIQhLocm8tN+wMDAxgdHa35HMyZmzcSmM1mYVmW61G2k6EoAtZscBYTAyd1jA7XZ25sNXRdRzKZhCiKiMVic3+hDjRKTAGgL6Tg9vVd9vaPDiVwdNwxlWUyGYyMjMAwDASDwaaoqGTJCpArt9jb9MFvgmrumOc6cNRSv98PTdMwMjLSkuCXdhBUQRAQi8VACLEtGG6AZtOw7rsbeZPgn9a9A4ZQMslHvSI+9or5OH1cx0TCadv6K3y2agpURumvWrWq7TEAzLVL13XXTOczQVVVGIbhWlqrjmo6MzrktMmohxz29vaip6fH3t69e3fN52BpMDweT0vS99QLSimy2SxkWebuRVy8XEEk5tyrvTsLsCw+ndLz+TwymQwURUEkEmnquZtBTBnevC6GvqCTWupLzw7CLLunzMzfTBWVvOldgHSO5CbHQH/+g4bO10HtmE4tHRsbaymhazVBjUajkCQJExMTrpEXapmw/u0eYGwY/77qNpxVS77dBMCfXtsHVRDw0h6H8PUtlhHvcfxJJyYmcObMGXvbjSh9v98PQRCQyfCV7k1RFIii6KpJnzeXN57QIadNRr1+n+Xq6cGDB+tyumcKBY/qKaWUO/WUEIL1Vzj3Kj1hov8IP4mhJyOVSqFQKEBV1aYFmTWTmAKALAr446t67e3DYwX87EhyynHTqaj1BmmQeG9l3tOf3g+aHKvrXB3UDo/Hg+7u7parpdOhVQQ1HA7D4/Egk8m4mvaI/uC/gf278HjvFfjVvJfZ+9+yvgub5vlxaG8BRa20+BMlYN2myrF/79699t/RaBS9vb1oN/x+PwzDcJUETgdGDN1qlyiKUBSlE6U/AzrktMmo17S/evVq+3u6ruOll16q+RyapsE0Te5WYyyvnaIo3OVzi3ZJFVGtL+0tQCvwG1STSCTsibjRe9lsYsqwaZ4f1y910l9984URjGSnukwwFTWdTkOSJHR3dyMYDNa1uCNbbwcC565Z1EqTegcthSAItloqCEJb1NLp0GyCyhZ/mqa5GwD121+C/uT7OOPrxr+vfqO9f123D2/bEEcqaeL4kfLUUV74VGdKNwwD+/bts7c3bNjQ9oBZVVUhiiJ3vqYsPsPNAC0mIvEUxMwTOuS0BaiHHEqShHXr1tnbu3fvrmtFlcvlIEkSdyQwk8lwqZ4CwNqNXkhyaYAwdIqXdvPlF1UOSqkdmBGNRut24WgVMWV43xU98Mul4SWnW/j8U2crzPvlSKfTFSoq81msBUT1g9z2dnub/vYXoCdrz3zRwdwghFQ8p3arpdOhWQRVURSEw2EYhtGS96Ja0BeeBv36vyAnevCPl74TBbE0ngcUAR+/tg8CAfbszAHnXil/UMDy1ZVj/pEjR2wfT0mSsHbt2rb+BqCUgss0Ta6S7gOlOdrNcqUAfxZO3tAhpy1AvXVyN2zYYP+dSCRw+vTpms/BTOi85RY1TRP5fB4ej6ctKZFqgccr4JL1jj/syeNFJMb4SXcyGaZpIpFI2BH8ta68W01MASDik/AHL3NMiHuHcnjowMzXYioqi+oOh8Po6empaQAnW14LzD8XiUwprK/9C2idOTU7mB5+vx89PT0IBoN2BLsbaul0aJSgiqKIaDRasQB0A/Sl3bC+8o8wKHDPpe/EycB8+7OPXD0f3X4ZA6d0jI849/zSy3x2mVKG8swv5Za5dsHn80GSJHtO4gmqqtpzkhuQZRmyLHN3X3hCh5y2AISQuoJ/IpEIlixZYm/Xk1bKsixomsZdYBQA2yGeR/V06UoFwXB5cBRfVUwmg5kcZVlGNBqt+nvtIKYMNy4L4drFTrDTf+8eqYjenw65XA7Dw8NIpVIQBAHRaBTd3d1VTaxEFCG87Q+cHaePgz787brb34EDn8+Hnp4eu5BCMpnEyMgId9HX9RLU8lRtiUTCNVMvPX4Y1r/eBWro+I9Vb8ALMSeA6fZLu/DyRUEYOsX+FxxS1dsnobevcsE/OjqKs2fP2tvlwke7EAgEYFkWdyZ9RVFcz23aMenPjQ45bRHq9fssH0SOHj1aV4Qjq8zEm+8pc4pnK2qeIAgE6y93FhTJcRMnOA6OAkrPOZfL2UnC50I7iSlQGng/cNU8dPlKz9qwgM89OQDNmN2nl1KKTCaDoaEh2x+1q6sLXV1dc6ruZN3lIDdsc8710wdAD+9v+LdcrGDBTtFo1C7dOTQ0xJ2Zthz1EFRW5CKdTrtWAYoOnIT1L38DaHk8tOg6/LzvavuzaxcH8Y5NcQDAS3vyKORLC2dBAC69fKp1oVzY6OnpaXsglNfrhSzLyOVy3C3yeahU1THpz40OOW0BKKV2mopasXTpUju1DqW0ItqyWjAnb97IKcC3ehrvldG3yCE/B17MI5N231w5G5LJJDRNQyAQmPWetpuYMgQ9pVyMTB84nSriazuHq/oupRTpdBpDQ0PIZrNQFAXd3d2IxWKzJq4mt78H6F3ATgLrP+8FLfBLpniEx+OxFwSiKFY8h/MBtRDUSCQCn8+HXC7nWrojOjoE696/BjJpPB1fj28udxZYl8R9+Og18yEQgtEhHccPO4vmFWs88Acq55lisVgRUOuWasoWmTxBEAR4vV47eNgN8GjV5BEdctoCMKm+ntWRIAhYv94pTbd37966alFns1kuKzOxRMyqqnKnngKlBNbllaNeeCYHymnuU4bx8XF7Ep7O19gtYsqwcZ4ft611igf85HASz5xKV/19y7IwMTGBkZER5PN5eL1exONxdHd3T9u/iccL4ff/tCQrAcDoEOh3v9rw77jQwZKl9/T0oKurC4qiIJvNYnh4GOl0mjsFbC5UQ1DD4TBUVUWhUGhqFataQCcSsO69E0iO4XBwIT6/9m2gpNR3ewMyPn39AngkAYZO8cJzZZWgQiJWrZvqPnbw4EF7zlAUpe3lSr1er913Gi1X22zwUKmKtzmZV3TIaQtRbye89NJL7ZVVLperSz1l5hTeAqOAUr5OSmlVpuh2w+MVsGGz89wSYyaOHnLHzFctWHlQXdftyZbBbWLK8M5NcSyLOn6j9/72LE5N1HZfDcNAIpGwFTwWwNLb24tgMFihRpBlq0Fufau9TX/zKOgLTzf+Qy5ASJKEUCiE3t5ehMNhEEJspXRiYoI7glELZiOobDHn5rtBsxlYn/9rYPgshj0R/N2G96IolqwCfkXAZ25YiLC3tIjf90Ie+WzpWRACXPbyqUFQlNIKk/7atWvbHoAaCoVgWRZ3qingVIRyy1e63niUixEdctoiUErtiLxaoapqhSlmx44dNaunlFI7tyhv0fHM95StsHlD3yIFCxY79+zgngLSE3yb9y3LwtjYGAzDQCQSgaqq3BBToJSc/xPX9sEnlYacvGHh7idOI1Os/b6apmn7Pk5MTIBSaqc2isVi9uBPtr0FWOaoRtZ/fQF0eKA5P+g8B/NJj8fj6OnpsVP+MPKfTqfPa1JajukIajAYRCAQgKZpSCQS7rRrIgHrnk8Dp08gK3px18b3IamUXLpEAvzllgVYFC4t6IbO6jh5rDynqQeR2FTL0+DgYEX563ab9JlFLJPJcNd/fD4fRFF01V/a6/W2vXzs+YrOXWoRGjHtA8DmzZsbVk+Z6YJH9ZSZCXlUT4GSed/rK70elgXseibHbWlTBsuyMDo6CsMwuCKmDAvDHvzptU5anIG0jn/6zcCM+U/nAiuNOzw8jLGxMbt8bywWK6mAsRi8f/wXAFsAZdOwvvBZ0Cx/ik47wFSbSCSC3t5eRCIRSJKEXC6HkZER223iQsRkghoMBlEsFl1LGUWHz8L6f38BnD4OTZDx/9a/C6f88+zPP/jyedg4rzRuFzULLz7nEKpwdHpzPgDs3LnT/nvBggWIxWLTHtcKsPy3pmly6Zvs9/vtMcMtdEz61aNDTluMejuj3+9vWD01DAOapsHn83G3WmMDmKIoXJo5FI+AjS9znt1EwsTh/Xyb94ESQS0WiyCEgFLKXaqfly8M4u0b4/b2zrNZfOvFkYbPyxSwoaEh220kEAige/0mRD96p3Pg4BlYX/l/oC6lCmo3BEGAqqqIxWKYN28eYrGYbdr8/9t78/A2zvPc+54d+8Kd2ihKpnaJ2iVLtuR4U2QpXhI7Tey4Tb40+dq6adImTZtmb7M1TduT5KRt2vQ7SdMTx47t2o4cO5Zjy5K8aN9XaqFISiJFEgCJHYOZ+f6AZgiQIAmSWAbk87suXOAMMMAAxLzv/T5rIBBAV1cXAoHAuOLayw1N0zIy8WOxWGmEafvllDDt7kScFfCtpR/FSe8txuOPLK7EXXM9xvbJI1HE07Lzl6+1gWWHliDy+Xy4eHGg8cTy5csL9hmyYbfbjeQ5s8UnC4IAURQRjZauROB4u0dOVcylWCYhHMeNW3ytWrXKSBqKRCLjqnsaCoXAMIwps+N1149encBs1E4TMGvOQNhBy+kYAj5zixo95lTPRtVd/GbikSWVuHXmwP/8udM+7G7NT5tIPdbtxo0bRr1UccOdcD36yYEnnTkG7lf/aboFW77geR4OhwNVVVWoq6uDx+OBJElIJBJGOERPT48py/wUEt2ln0gk8tbqdKxo509C/YcvAP0BxFkB3176UZzwNhmPv6fRhUebBxZv19oTuHplYOEwf4kFLk/2TO90q6nX68WcOXMK8Amyo88xyWTSlGXG9P9zKeNg9a5URG5MztHZZIzXrZ4P62k8Hocsy6a8MPQCzYIgmE5A6SxaboXNnrpMNA04uj8CRTHnhJ7uyu/t7TVc/B6Px1ShHSzD4NO31qPBM2BF+OG713GuJ78u5WQyiVAolBJid74P/K3vMR6TX38J9ndfR3V1tSHozRabnQsMw0AQBNjtdsNdX1NTA5fLZbjsfT4fOjs70dvbi3A4bIpuTsXG7XYbMab6tVFsgaodfTdVLioaMYTp8TRhekejC59anyoZBQDxmIoThwauCW8Vj7nzs1vegsFgRvmo1atXF3W8dzqdYFkWwWDuVTiKBc/zsFqtiEajJWuuAIy/9vlUhcRpgdE0DZIkjbtsUrr1NBqNjtt6yrKsqQSKTigUgqIoprWeCgKD5jUD7v1gn4ozx8wXl5ctxlSPQdWz+M1kPbcKLP5m03Q4xdQQlFA0/O0b7WgLFCZ0QtM0qI8/AcwZ6LgT+Mk/I3HobUPYVVdXo76+HlVVVaYUrAzDQBTFjPOtq6vLENh6bcmenh50dnYiEAiUzH1tFvTFWTweN2JMJ9rqdKyob70G9V++AyRlxFke3172sUxhOtuFP1tfD+6mu17TNBzdH0Einvq/cRywfK0VTBZ3PgAcOXLESEByOBxFLR+lzy2yLJsyZtkMVtOJaICpConTAqOvXse7aspH5r6+YtRrvJkJfTLlOM5U4imdqloBjU0D7v3LLQlcvWKe7lEjJT/pWfz6JGymBLQ6p4jP3z4dNxP4EUqo+Orr7egKFea7ZQQR7BN/A1RUp3ZoGnx//ze4tutV+Hw+ozsQx3FDBGt1dTU8Ho9RfshqtUIURfA8n7drimEY8DwPSZJgtVrhcDjgcrmMFq51dXUZwplhGMRiMfT396O3txednZ1GKEMiYZ7fZynxer1GHdPe3t4MkV4sgar+9jloP/0BoKkpYdr8cRz3DMSYbp7twp/dOiBMAaDldBw3rg9Y+RY2W+FwZnfnR6PRjITZlStXFrXIu8vlAsMw6O/PT2hOPtFrfesexFJhRsOQ2WG0qbykLiKqqqKzs3Ncx0YiEfz0pz81XBK33XYbVq5cOabXsNls8Hg86OvrM2UmZU1NDViWRXd3tyndjkpSw97fhdAfSJ0bxwG33+OE013aTh+5ZuUzDGMUVo/FYvD7/aaxpr3V1o/v7b0GPWm/ziHgO/c2wGstjKVB62iF+p2/AuI3rTyiCPZPvwxmYbPxHJZljSQKvSTcSBO+qqpQVRWKohgWLP371WPO05PTdEHLcRxYlgXHcSOK3GQyCVmWM25mK9VjJliWNTqJRaPREctFMQyDqqoqCIKA/v7+vFnYtEQc2i9+DO2t1wAgJUyXfwLHXY3GczbPduHTg4TpjU4Z+94cGKNrp/FYc9vwhoV9+/Zh3759AFK/tY997GNFs/gLgoDq6mpTVQVJRx8fe3t7S9aWluM41NTUmM4wZHZInBYRv98/brfH3r17jYB3q9WKj370o2MegPT+yl1dXeM6h0Kit0scbSIpJeGQgj07Q5ATqUvG4WRx2z1OCEJpBp3xlIvSE6RkWYbP5zPNQuDVCwH8aN/A4m22R8I375kFh1gY8a+dOQb1f/8doFsYBRHsE18Es3jFiMeli0n9fvA+lmVzmog0TcsQtNnu08UukRuCIKCiosLIHM8lDjLfAlXr7oT6b98B2i4BAOKsgO+s/ASOOWYbz9k024XPDBKmkbCKPTuDhjvf7mBx+z0OCGJ2J2cikcBPf/pTY+Gzfv16rF27dkLnPhaqq6vB8zxu3LhhmrFEh2VZ1NbWQpbljNqvxcbpdJo2bM3MkDgtIolEYtwXST6sp7qbcCIiuZB4vV5YrdaSrnJHo+uajP17Bqwa9TMErNpQ/GSzidQxtdvtcLlc0DQNPp/PNC7g50714mdHB8pKLaiy4ut3zYSFL0z0kXbuBNQf/C2QuPlb4wWwf/I3YJauyuv7VFenwgh6enpMY62erFitVng8HmiaZsTb5kq+BKp24hDUn/wjEEkd7xcd+PaqP8YFqdp4zqYGFz6zIVOYKoqGt18PIeAb8M5svMsJt3f4BdqRI0ewZ88eAClR/rGPfaxopfl0b1yuC4Bio4tCn89X0pJ6tbW1RQ2zmCxQzGmR0DRtQt2abDYbli1bZmyPJ/ZU73Vs1tjO/v5+qKoKt9td6lMZltppApoWDWTMXu+QcanI7U0nWmA/HA4bx1VWVpomHur9iyvx/kUDRcPP9kTxzV0diMqFsRwy85eC/fTXAOnmZJ6Uof7LN6EdO1CQ9yNhWlj0+FxFUdDT0zNmQTLRGFRNVaG++CTUH/6tIUzbbTX46w2fH1WYAsCpI1FDmALA0lW2EYWpoig4cuSIsb1kyZKiCVOWZeFyuaAoiinblDIMYyRplVKY6l2piLFD4rRI6Ja1iQiBlStXZmTuHz9+fEzH690xBEEwZeF7faDT6zSalfmLLaiuHYiHPHMsht7u4pQoyVfnp3g8bsT3ut1u0ywIfn95Ne6ZO3Aux7si+OrrbQjFC+MyZOYtBvuZrwGWmxUZkkmo//ptaIffLsj7EfmHYRhUVFQYNUz1EmrjYbwCVdO7j/36yVTNOQDHqxfiC+v/At0YGGvvm+fJKkzbLydw5eKAB6NhroiZjSO3dj5z5owhDFmWxYoVI4ek5BOXywWWZY32wWbDbreDZdmSC2ezLPzLERKnRWYi3ZqyWU/H6pINh8NG9xwzEgqFkEwm4XA4TLviZFgGK261wWobqH966O0wYtHCxgbmuyWpoijo7u5GLBaD3W5HZWVlyQvTMwyDP15bh82zB6oKnOuJ4YuvtSEQLcwCgLllEdjPfB2w3qyooSSh/tvfQ33paVNOvMQAHMehuroaFosF4XAYPT09E47RHatA1a5chPp3fw6cPGTse73pLvzdko8hoqauJwbAx1fV4JOra4cI0/6AghOHBgrXeyo4LF4xcmfBZDJpJEEBwMKFC4s2put1qePxuOk60OnY7XYkk8mShq/pCZU0howPEqdFhmGYCRXjTbeexmIxHDx4cEzH64XvRVE0bSu1vr4+w21kViSJTcWa3ryC4jENh96JQB1nn/jRyLcw1dHjTkOhECRJQlVVVcnr8XEsg89sqMd7mzzGvtZAHF/YeQXd4cKUg2HmLgD7538H2G5aOjQN2vP/De0/vgfNpPHPUx1JklBdXQ2O49DX14e+vr68vXYuAlVTVaiv74D6nc8DvTdS+wD8Yv3H8L+nb4Heq0PkGPzVpum4f0HFkNh0OaHi4Fth6LlEosRg1QY7OG7kGPZjx44ZVVdYlsWaNWsm9oHHgNvthqZpef2+84neRrXUVWl0qyll6Y8PEqclYCKmfpvNluG+OXz48Jiz2/W2oWYVf/F4HNFoFFar1bQCGgC8lTyWpFk4fN1JHD+Y/97NhRKm6fT398Pv94PjOFRVVZU87INlGPzRmtqMGNRrQRl//eoVXO0vUB3Uxiawn/97oLrO2Kcd2AP1u38Nzdc9wpFEsbHb7aioSP029M5X+WYkgap1XYP6vb+B9uS/A8nUgklmBXz/3r/BM5aFxvPcFg7fvHtWRrteHVXRcOCtCMKhAUvvivU2oyPdcAw2SjQ3NxdtLLfZbBBF0fBwmQ29jaqiKCUVpyzLwmod2fpNjAyJ0xKgFwYeL6tXrzYGSlVVsXv37jEJovS2oWa9gNKTo8y88myYK2JGw0CSW/vlBM6fyp+rqxjCVCcajRoZ5RUVFSX/7hmGwR+sqMHjzQPJJD2RJL6w8wou+grjTmSmzwL7N98DFgyEz6DtItRvfhbahTMFeU8id1iWhdfrhdvtRjKZRHd3d0GrTQwWqHabFeqr/wP1638GtJw2nhfw1uPr9/0ddic8xr4ZLhH/sKUB86qGjrGapuHogQh6bwwIvPlLLKipGz1h9tChQ0Y1E1EUsXr16gl8wtwxexIUACMcrNQNAczY8KbcIHFaIiZS90wQBNx+++3G9pUrV3D58uUxvYZuPTVr/TVFURAMBsHzvGnPEUgJqGVrbKioHnCFnz8VR9ulibuCiylMdWRZRnd3N+LxOOx2O6qrqyGKIydmFJqHl1Tik6trje2+mIK/fvUK3rpSmAmIcbjAfvprYO7cPrCzPwD1H78Ide/OgrwnMToWiwXV1dVGn/Senp6i1NbUBWr00nnE/vbPof3q/wDygCA+sfYBfHbtZ3E6NDCdLqu14e+3NKDWkf3aOXsihqtXBkJUZjRkVgEZjlAohKNHjxrbq1atKpqBwePxgGVZBAIBU8ZRmqWNql4pgJgYJE5LgKZp4Hl+Qq7TW265BTNnzjS2d+/ePSY3i6Zphvgz64UUDoeRSCRgt9tLLpBGguMYrNlog8M1cDkdPxjFjevjj48shTDV0Vue6rG/VVVVRovCUrFtvhefubUeei5JQtHw3b3X8H+PdUMtwETJ8DzYD38SzONPANzNhUcyCe1nP4T67/8ALWS+Vo2TFd1aqrvxfT5fUTucackklB1PoefPfx+JcwNtQhWnB7/8wNfxNdtG+OMDrvk757jxlffMHLaBROuFOC6cGVi8VtXyaF6TW63kffv2GYLcZrNh+fLl4/xUY8NqtcJisSASiZi2BrXT6QTLsiWvuapXCiAmBn2DJUAfhCaSXckwDDZt2mRcBP39/Th06NAoR2USDoehKAocDodpXRB6PK3H4zHtOQKAKLFYt8kOyTKQwX/w7TACvrHHZZVSmKYTDocNK6rD4Si5FfU9Nyd9e1q3nKdP9uI7u68iIhfGgsZu2gL2s98AnAPlrbQDe6B+9U+hHdtfkPckBhhsLdWrSxQLre0S1G9/Dtrz/w2kLf4j73kQf7v17/B0rxW6ROZZBp9YXYM/W18HYZiEps6rMk4cHrDquTwcVm+wgx0lAQpIifLTpwdCCdatW1eUNqUsy8LtdkNRFNMmQXEcB5vNhkQiUdIKAmQ1zR8kTkuEXpR/Igk/lZWVaG4e6Ad+8ODBMQ8ewWAQHMeZtrSUoijo7+83vXsfAGx2Dus22cDzqYlGSQL794QRCecunMwiTHUURTGVFXVFvR3f2zIbM1wDInlfRwh//ds2dAYLlCjVtAjsF/8JaFo0sLM/APV/fwPq//k+tEhps4InI8NZS4vVylXr90P9v/8G9Zt/YbQgBQB4KnH4o1/HE9ImnLgxIDLrnQK+u6UB2+cPzcjX8fcmcfidMHQ1a7GyWHu7HYKY27X0zjvvGNZij8eDRYsWjXJEfjC7Ox9IWU0Zhil5rCkV3c8fJE5LRD6spwCwdu1aozSVoihGK7tciUQikGXZ1K6IcnHvA4Dby99sZ5rajsc07NsdRiI++qRqNmGajpmsqNNcIr67pQGrpg1YKK70xfG5V1pxvLMwQpGprAb7uW+B+eDHAX7AWqW9/TuoX/8UtNNHC/K+U5FSWku1eAzqjl9C/Zs/grbrN0CaGE7evgX/9fA38I1WK/piA1bUO2+pwD9tnY25FcOHaYWDCvbvGSgZxQsM1m2yG7WSR+P69eu4ePGisb1+/fqiiKBycOfrdVdjsVjJWzGb1chTjphTjUwRNE2DJEkTcs1IkoTbbrvN2L506RJaW1vH9BrBYBAsy5raMlku7n0AqKkXsGz1QJJCqF/Fgb0RKMrwVgczC1OdwVbUysrKkllR7SKHL26ekVFqKphQ8dXX2/Hzo91IFqDeLMOyYO95AOxX/hcwu2ngAV8P1H/+CtT//heKRZ0ApbSWaooCdfdvoX7x/4X2wi+AeFpCTXUduv/k7/Clmm14/sJAPKPIMfjC3U34zoPNqPEO32EtHlNvLlBTv0mGBdZstMHlyU1capqGt98e6FhWU1ODpqamEY7ID+XgzgdSVlNN00xhNS11jejJBKOZ1U4/hZioINE0Dc8++yyuXbsGICXgHn300TFdKFVVVRAEATdu3ChKBux4sNvtcLvdCIVCJR+IcuHcyVhGWamaeh6rNw4tsF0OwnQwHMfB4/FAkiQkk0kEAoGSWS12Xe7Dj/Z1IpEm/m+psOAvNk7DdFdhrLuaokB75Vlov/5lKn5Dx2YHs+2DYN6zHczNRWd1daoUVnc31UodDovFArfbDY7jEI1G0dfXVxxRqmnA8QNQn/0ZcL0980GHE+q2D2FH3Xo8edKHeNrva6ZbxOdvm44Gr8UYO/v7+4eUWErEVbz7Zhh9/oExdcU6G2bMzv132dLSgpdfftnYfuihhzKSYQtFRUUFLBYLent7TWs1FUURVVVViEQiCAQCJT2X6urqosQATxVInJYYTdPAMAxu3LgxoaLG3d3d+OUvf2nEBG3YsGFM9e/MdJGPRGVlJSRJQk9PT8ldOKOhaRqOHYii/fLAeQ4WqOUoTNOx2+2G9TQWi6G/v78kxbkv9Mbwj29dxbXgQIUEiWPw8VW1uPeWwtVr1douQf0//wvoaM18oKoWzPv/AMzqjaipqQFA4jQboijC5XJBFEWoqopAIFA8F/7l81Cf+Slw/mTmA4II5u77cXHd+/AvxwK45M8UZnfPdeOTq2sh8TdbkzJMVoGaTZguWGZB08Lcq7QkEgn8/Oc/NwrKNzQ04IEHHhjHpx0bVqsVXq/X9POBWYwqFosFFRUVxnxOTBwSpyYhH4PArl27cPz4cQCpOJyPfOQjY3LV6ytlMws/vZe2qqro7u42bYC+jqqm2pp2dgyIJl2gVlR4ylqY6nAcB5fLBavVCk3TEI1GEQwGiz5ZRGUV/3moCzsvZrog181w4Il1dXBbCuNy02QZ2u9ehPabXwHRSOaDc+aj4pN/AXHBMhKnafA8D5fLBYvFAk3TEIlEEAwGC24t1VQVOHUY6s4XgDPHMh9kGDC33onYtkfxZLuKHef8SI8OcUkcPrG6FptmD+3GNFig+nr7hwjTOfMkLFpuGZN42bNnD44cOQIgdZ099thj8Hg8Y/rMY0UfYzVNw40bN0w7xuoC2gyetKqqKtPnQ5QbJE5Ngj4QTGRCj8Vi+K//+i/D8jBv3jy8973vzfl4juNQU1NjdF4xK/qgVC6iLptAnT7Liq0PNEBOJsriM+SCIAhwOp2G4AiHw0azh2LyTnsQP9rXiWB84FryWjg8sa4ea2YULmFBC/ZB+/Uvob35ckYiDQBIG94D+b0Pg6kvvDvWzHAcB6fTCavVCoZhDFFa6IWMlohDe3cXtNdeHOq+B4AlK8F+4A9wiKnGv+3vRHck0/p/1xw3PrqyBi5p+DhRXaAqCosXn74Ef+/A9T4eYdrT04Mnn3zSEIdr167F+vXrcz5+vFRXV4PnefT29prWSMEwjOGRKLWA1r2OZDXNLyROTUQ4HJ5w4PmpU6fwu9/9ztgea3yS0+mE0+lEX19fSXsTj4bH44HNZjP9eepkE6gzGmxYtkYYEoNa7gx21YZCIYTD4aJOIL0RGT94txNHr2f+NtbNcOAPV9WixlG42DCtsyMVw3h039AHl64Ge88DwIJlU2oiY1kWDofDaOtYrBAQrd8P7Y2XU5n32ZLVGm4B+/7fR6BxCf7jYBfeasss4D7NKeCP19ZhWV1utSvlhIYDe2Po7R4IBRiPMB2cR+ByufCRj3yk4Ak3ephRtvhZM+FyueBwOOD3+0vaDQoYCDUj8guJUxORD+uppml4+umn0dXVBSB1ET/66KM5uxwYhkF1dTVYlsWNGzeKbvXKFf08OY4zel+bHVXVcPyAjPbWAdfvcElSkwGLxQKXywWe541+3MVcSKiahpfO+fGzI92Q0/yzIsfg95ZU4YGFFcMWS88H2rmTUH/1/wFXLgx9cEYjmHseALP2djD85E2iYBjGEKUsyyKRSKC/v7/gFjnt6hVoO1+Atm9XRvH8mycFNK8Fe88DSMxZiFda+vDUiR6E5YGxjmeB9y+qxCNLKiFyuRW1yRZjOn+JA02LuDEvRM6cOYOdOwda5d5///2YPXv2mF5jrOhxk/F4HL29vQV9r4nA8zyqq6shyzJ6enpKei5kNS0cJE5NRj5iT7u6uvD0008blqpFixbh7rvvzvl4fZAyezC8PkgpilIW8adutxsWiw2v/voK2i5PDYEKpNosOp1OcByHZDKJYDBYVGtHWyCOf93fidPdme853SXi/11Ti+YcrWLjQVNVOM8eRfjZ/0IyvZi7jrsCzJ3bwGx+Lxi7eUu5jQe73Q6HwwGO4yDLMoLBYEGTnbT+ALRDb0Hb9yZw8ezQJ4gSmI13gbnrfqjV9Xjjch+ePN6DnkEu/AVVVjyxrg6zPLlbw7IJ08XLPdh4Rz2CweCYrJCxWAw///nPjWtk7ty52LZtW87Hj4f0ONPu7m7TGiWAgSSo7u7ukiRfDj4XijUtDCROTYY+OEz0onv33Xexf/9Ae8Vt27Zh7ty5OR9fDslRQEr4eDweRKNRoxaqGUnPyu/p6R02SWqyClS9rZ/D4QDLspBlGeFwGJFIZPSD84CmaXjjcj9+euQG+mKZnonbGpz4f1bWoNJWGAumMem/uRPqzueBU0eGPkmUwKzaAGbtJmBBM5gyrZfIMAxsNhvsdrthMQ8GgwX7P2uxCLQj+6DtfxM4fXRIrC+AjAUAbA682xHCfx/tRkd/5rhmF1j8/opq3HuLB+wYrGDZhOmceRIWr7Aa5YXG4iZ/4403cOLECQCpBfjjjz9e8BrUusgyc9kowFxJUJShX1hInJqQfCT6KIqCZ555xnDvW61WPPbYY0Y3qdEol+QoAPB6vbBarQgEAkUTO2MhW7mobDGoFdU81my0QZQmb2+MwW5eRVEQiUQQDoeLYq0JJRT832PdeKUlkJGJbeEZbJvnxUOLKuEcIellPAyuczqiyxkAHK6UUF2zCWhaBMakndvS0VsgW61W4/+qJ8TlG02WgVOHoO3bDe34fmC4xfOMRjD3PghmzW1geAHHO8P4r6PdaOnNtN7yLPDeJi8eWVIJzxgrOkRCCvbtDiMUHPjtpseYDldmaji6urrw1FNPGdtjLQk4HvT4zWAwiGAwOPoBJcJMSVAA1TUtNCROTYa+CsuHxdLv9+PJJ580rLCNjY3Yvn17zqu8ckmOSo8/NYOrJ52R6phmE6gOF4t1mxyw2c0vSCbCYAubXoIqHA4XJX74oi+Gf93fOUSoWHkWDyz04v4FFbCL+RGpwxXhHzVZBwA8lWBW35ayqM6+xXQWGkmSYLfbYbGkanfKsoxQKJT3sA2tzw/t7HHg9FFoR/cBkWFEnqcSzNpNYNZtAmbOAcMwuNAbw8+P3sDRzsyFKwPgPXNc+NDSKtQ6xu6aDfiS2L8njHhsYArNlvyUq0BVVRVPP/00bty4ASC16H700UcL2qZUkiRUVlaaPs4UMFcSlO6xI6tp4SBxalISiURegr2PHz+OXbt2Gdt33nknlixZktOx5ZIcBaTKGKXKuJgn/jSXAvuqquH4wcxC/ZIl1Xfb7S1P1+5YkSQJDofDyHjVXf7RaLSg/0dV0/DaxT78/Gg3+uOZrn6HyOLBhRXYPr8CVmFiC4XROkRpiTi0Yweg7d8NnDyY3ZoKAJU1YBYsBeYtBTN/KZjK6gmd13hhWRY2mw02m81YWMRiMYTD4byFAGmRMHD+JLSzx6GdOQZcaxv+yTYHmNUbwazdbFiaNU3Dia4IXjzrw4GrQxfWa2c48JHmajSMIa40na7rMg69Hc5oDjZvsQXzFktZxUouAvXIkSPYs2ePsV3oTlB6nCkA04/vZkqCAoDa2tqCLhoIEqemRF+N+Xy+CScQaJqGF154AW1tqcFdEAR8+MMfzrmQc7kkRwEDq1kzWAHG0vlJ0zScPxXD+VMDsV48z2DVBhtq6qeO24jnedjtdsM1rKqqIXoKaU2NyApeOufH82d8CCUyJ2iXxOH9iypw3zyv0RForIylfakWCUM7+m5KqJ45lj2G0njhOjDzlgALloKZtxRMRdW4zi9XJEmCzWaDxZKyDOohGZFIZMJ1SrVYFGhtgXbmOLQzR1MVDkb67KIIpnkdmHWbgcUrjIoHCUXF7tZ+/PqsH62BobGTi6qt+P0V1VhYnVt4UzbaLsVx/GAU+szJMMCy1VbMmjOy0B1JoPb29uKXv/yl8T3Onz8fW7ZsGfc5joZ+LjzPw+fzmTrOFEiVaxJF0RSeMb2NNlFYSJyaGFmW8xLvGQqF8Itf/MIQunV1dXj44YfB5hjLVi7JUcCAKCxlwPx4W5KOd9KbbDAMA4vFArvdbmTCyrKMaDSKWCxWsMkpnFDw4lkfXjzrR0TOFEZOicM9c93Y2uQdc43UsYjTdLRgXyr7/MAe4PypHN6oDsyc+UD9TDDTZgH1M4DqejATsPAIggCLxQKr1WpYSePxOCKRyLgWzpqiAF1XoV29AnRcgXa1Fbh6BejpGv3gimowC5cBC5eDaV4LxmI1HvJHk3i5xY9XzgfQFx8qlBu9Eh5vrsbKafZxu2HzsYjMJlAVRcGvfvUrw51vs9nw2GOPwWq1jvJq40cf080esgUMGB3yUQd8ojAMg9ra2pznTmL8kDg1Kbr1NF/xNS0tLXj55ZeN7VtvvRVr1qzJ6dhyaxmqF0UuRYLUeIWpTspdGIGSHPiOR3IXTnZ4njdcyPqEkEwmEYvFEIvFCrJYCsYVPH/Ghx3nfIglM3/rLAOsme7AtvleLKu15fQ/Ga84TUcL+KCdOwGcO5G6v3E9twN5HqidDqZuBjBtZkq4VtcBDhfgcAKSdchnkCQJFosFFovFcF3maiXVFAUI9gH9AaA/AK3fDwR8wPV2aB1XgM724cMWBuNwgpm/DFjYnBKl1fVDzvWSL4Zfn/Nhd2sQSXXouLSi3o77F3ixvN4+pgz8weQz/GawQH3ttdcyKqu8733vQ2Nj47jPdTT0XIJy8IaZbe7Rvzui8JA4NTnJZNJYUU+UV199FWfPpur/sSyLD37wg0b242iYafU6GizLoqqqChzHFbUF30SFqU62RIuZjSKWrbaCZaeeQNXJJpp0138sFkM8Hs/r5BWIJfE/p314+bwfcWXo685widg234s7Gl2wCcNbJ/MhTgej+bqhnT8JnD2Ruu/uHN8L8TzgcIF1usG5veDcHnBuL1iHC6qqIiknoMgylGQSUDVAUwEt7T4agXZTiKI/kErsGu//QLICTQvBLLgpRmc0Zq1UEIwreLstiF2X+4bUrgVSTRbe0+jG9gVezHJP3OuQlDUcfDuM7s4BUe10cVi7yT7uxEVdoHZ1deFHP/rRuGtSjxW9FFO+choKjW5oMEOJK5ZlUVNTQ1bTIkHitAzIl+slHo/jF7/4hVEuxOv14sMf/nDOLfH0gaIc3Ps8zxudO3p6egreuztfwlQnEr5ZoqZ/wL1cWcNj1a02SBYaHHV3syRJhutf0zQkEglDrObrfx5KKHj9Uh9+c96P68Ghsa82gcXm2S5smu3CgmrrEAtdIcTpYLTeG9BaTgFX26Bdb0/1j+/uSolIs8GyKWvu9AZgegOYGQ3A9NmphK9hJv54UsW+jhB2t/bjyPUQklk+VoWVx7Z5Xtzb5IErT+XAQv0KDr4dQbBv4LdUWc1j9W02iOLErkNFUfD0008bvwuXy4UPf/jDBWuFqSeN6lZIMydAAeYziOhjPFEcSJyWAaqqoqurKy9WoY6ODjz33HPG9vLly7Fp06acjjWbi2U09GQuPcOzUOebb2Gqk4irOLA3DF/PwMRosTJYdasdFdVTI5M/F1iWNSyqkjQQ/iDLMmKxGGRZhizLExarqqbhyLUwXjrvx6Fr2ReLlTYeG2c5cVuDC/MqLUbFC6Cw4jQbmpxIxXdeawfbdQ3obId2rR2avxdauMD1LCUL4PIYN6ZmGjCjAcz02UDdDDA51IdMqhqOXQ9jd2s/3u0IDgmx0GmqtOD+BRXYMMsJPo+ehWvtCRzbH0Uy7X2nzRSwfJ0tL80ydu/ejaNHjwJIWVIfffRRVFZWTvh1s8GyrFF5pRzaPZttrtHrfk/F0KpSQeK0TMhngs+ePXtw5MhAl5oHH3wQs2bNyulYs61mR8PhcMDlchWsg1ShhKmOomg4tj+Cq20DkwnDAIuWW9HYJNJgOQiGYQz3vyRJGeVeVFWFLMtIJBITFqzXgwm8dN6P1y/2ZfRkT6fGLuC2Bifet7wB86rtRXOj8jwPQRAybumuyGQyiVgkjFhvD+K93UAoCIT6U4I11J+6RW/GajNsKtCWYQAwKasnc3ObYQFRAtweMC5vSoi6U/eMZBnXuceTKk53R7G/I4i3rgSzJjcBgMfC4fYGFzY3unBLhSWv14GqajhzPIZL5zLdyLcskLBgWX7ea7CRYMOGDbj//vvH1ElqLOgdoMxQIzQXzOTOBwYSyIjiQeK0TMhXW1MgNTk99dRTRrklm82GD33oQ3A4HDkdb7aBYzT0DlL57oBSaGGqo2kaWi8kcOpINCOcb9pMAc1rbOAFEqjDoQs1URQhCAJ4ns8QahMVrFFZxd4r/dh7pR/HuyLIkpMDAJjpsWJ5rQVL62xYUmPLW4H/0YSo/vn0WyKRKHiIy1hQNQ2t/jiOXA/jaGcYZ25EIQ/zJVp5FrfOcmLzbBeW1trAFSD+OhZVceidMHzdA98RLzBYvtaK+hn56aGeLbzq0UcfRV1d3ZhbneZCoca/QmE2A4jeqIAK7hcXEqdlRD7rd3Z3d+Opp54y4o5qa2vxgQ98IKf4U7O5XEaDYRijTl6+4neLJUzT8fUkcejtCGLRAUudw8Vi9UY7nC4qCJ0r6YJOFMWsgjWZTEJVVSiKMuRe/3swfbEk3m4LYm9bEKe6IhjuqmAZYG6FBc11diyttWFhtTVrDVWO48CybMZ9tr/TzztdhOYjlKEQ9ERkHL0extHrYRzvjAxrHQUAnmWwerodm2e7sGqaY9y1ZnOhtzuJQ29nJiI63RxWb7TB4czf9fXaa6/h9OnTADITU8fa6jQX9HGqUJ6jfGPGuaWmpibnvAwif5A4LRPyXVoKAE6cOIE33njD2F60aBHuuuuunFaHZlvdjkb6wD/R5galEKY68ZiKw+9E0HNjwILO8wya11gxbVZ+LDtTkcEWSF38jXQtZBOuQOpa7Q0n8OYlP3Zd9OFU18iLIYFjsKTOiVUzPVhQ68T8WhdqXcO7j1VVNd4vHyEKhSQYV3DJH8MlXwyX/HFc6I3hWnDkZEoLz2JprRXrZjhx6ywnHHmyMg+Hpmm4dD6OM8diGZ6J6Q0Clq22gefzZy0bXNJv3bp1WLdunbGdT4GqhzSZoSlJrpgt6ZZKR5UOEqdlhqIouHHjRt5WlK+//jpOnjxpbG/evBnNzc05HVtu7n2O41BVVQWWZcfdFaWUwlRHVTWcOxnDhTOZ5984T8KiZRaweUjWIFIwDDPEYpntfqTyMp39Mbx1qRcH2/w40OZHX3T0ZBS3hcecShvmVFjQ6LVgtkfCDJcAFpoprEmD0TQNvdGkIUIv+VKCtDsyehgSy6SSmprr7Fheb8f8KmteE5tGQk5oOHYggusdaTHdLLBkhRUNc/Mb0+3z+fDUU08ZyUg1NTV45JFHhrTBzIdA1Y0HhU4GzSdmM3hQElRpIXFahuQzOUpRFDz33HO4fj1V1JthGDz00EOYMWPGqMfqLhg9HtbspUmAgRJTQKpl4FiyVs0gTNPpvCrjyL4IkvLAJezycFi+1ga3l9z8xYRhGLAsa0xk6fd6q+BAIABV03CpN4pjnSEcvRbCqa4IotnqImWBY4AZLgk1DgFVNh4VNh5VNgEVVt7YHqne6kRIqhp6IzJ6wkl0p913h2X0RJLoCcvDJoZlo84hYHm9Hcvr7FhaZyu4dTQb3V0yju2PIhoZOG+rjcWqDTZ4K/Prxk0kEnj66aeNcUMURXzoQx8ato30RASqxWKB1+uFoijo6ekpq3HZTO58SoIqLSROy5B8JkcBQDgcxi9/+UsjFtNiseBDH/oQXC7XqMfqRZ3NIthyQRRFVFZWQlXVnGugmk2Y6oSDqTqM/YGBz8Cwqa5StyyQpnTRfrMwUimppKqhpTeK450RnOuJ4rI/Dl90/Ne1TWBRYeXhkjiIHAOBYyFyzM1b2t88C55lICsq4kkNsaSKuKIhnlRTNyW1L5HUEEwo8EeTw8bQjoZTZNFYYcEcrwVzKyyYV2lBnbN0ISjJpIYzx6JovZDpNq6q5bFyff7rCGuaht/+9rc4f/68sW/btm2YO3fuiMeNR6COZ2wrNfrn5Hm+qE1TRoKSoEoPidMyJd9xRF1dXXjmmWeMway6uhoPP/wwhBzqEXo8HthstrLo06wjSRIqKipysi6YVZjqJJMaTh+N4srFzEHdU8Fh+TobJUuVmLHWOe2PJXE5EEerP47WQAyX/XG098WzFp43G5U2/qYIlTDHa8GcCguqbLxpJnhfTxJH90UQDg18mQyTWsw1LZTAFGAxd+zYMbz55pvG9qpVq7Bx48acjh2LQJ2IV6iU6ONrocpojQdKgio9JE7LkEIkRwHAmTNnsHPnTmN73rx52LJly6gTS/rKtxwKPOvoVt+R4rLMLkzT6e6UcexAppuS5YAFSy2YM08yjUCYauSjCH9S1dDRF0d7XwK90ZQr3RdJoieSRG9Ehj+aRJYOq3nHY+FQbU+FFVTZBVTbBFTZeVTbBNQ5BLgs5pzQFSUVp33xbGacdioMxgq3tzDn3dnZiWeeecZY/E6fPh0PPfTQmFpg5iJQ0+PpzWJ9zAUzet4oCcockDgtY/KdHAVkdi0BgI0bN2LVqlWjHsfzPKqrq6EoimlihnJBz2hNJBLo7e3NOO9yEqY6ckLFySNRdLRmLhAqqjmsWGuDzUFW1GJTjA5RiqqhL66gNyKjN5JERFaRUFQkFO3mTYWsaIgrGmQl5a6XVQ0Cx8DCs5A4BhLPQuJZWHgGEsfe3GZgE1hU2VKCVODKr3VuwJeylgb7M62lcxdImLfYkpduT9mIRqN48sknDTFpt9vx4Q9/GDabbcyvNZJA5TgOlZWV4DgOfr9/QpVIiokZcxYoCco8kDgtc/KZHAWkytQ8//zz6OjoAJAaFO+//340NDSMeqyebVkuNfV09JVyukAtR2GaTudVGccPRjJqNnI8sKg5/1nIxMiUqn3pVEdVNbScjqPldGaJKIeTxfK1NnirCmflVVUVL774Itra2gCkxtEPfOADmDZt2rhfM5tAZVnW8FqVS/cnHf2zmMnSS0lQ5qH8lsFEBna7Pa+xMSzLYuvWrUYylKZpeOWVVxAIBEY9NhKJIBKJwGq1wm635+2cCo3eOUUURVRUVJS9MAWAuukCNr/XifqZAzHDShI4cSiKt14Poc+fn2Q6gjAj3Z0y3vxtEOdPZQrTxiYRt9/rLKgwBYD9+/cbwhRIeaAmIkyB1Fish025XC44nU5DmAYCgbISpi6XC6IoIhQKmUaYWiwWWCyWsvH6TXZInJY5DMPA6/Xm9TWtViu2bdtmiN54PI4dO3bkNIj09fUhmUzC5XLllExlFoLBIEKhECRJKnthqiNJLFZvsGPlrTYI4oCl1N+jYPfOEI4fjCARL70rjSDyRSSs4uBbYbz7ZhihNDe+1c7i1jvsWLIyv0X1s9Ha2or9+/cb23PnzsWKFSvy8trpAtXpdBrCNBKJ5OX1i4HFYoHD4UA8HjdNO1WGYeB2u42/idJD4rTM0TQNgiDkPYC7uroad999t7Ht8/nw6quvjhoXpGma4dL3er1ldaGnnyvDMGV17iMxfZaIO97rRN30tMWCBly5mMDrvwmi9UIc2nBN4QmiDFCSGs6fimHXy/0ZBfUBoGGuiDu2OFFVW/jFcm9vL1555RVj2+Px4O67787rWDJ4bBpLclWp4TgOHo8HiqKYKvTL7XYPaYZAlJby+VUTWdEHKYfDkffSF/PmzctIhrp06RJ27do1qttDlmX09/eD53ljNWp20l35ugW1srJy0ghUi5XFmtvsWLfJDrtz4LKXExpOHIpi984QfD3k6ifKC03T0HlVxq5Xgjh3Mob0sp7eSg633+NItSAVCn8dh0IhvPDCC4aHied53HfffZAkKW/vkR5j2tfXZ7j4HQ5H3t6jkHi9XrAsm2pIYYIEKCBlybXZbOTONxmUEDWJkGU570kXqqpix44daG1tNfblWqfP6/XCarWavv5pthjTbElSkwVV0XCpJY6WU3Ekk5mfa8ZsAQuXWWGx0ro1X1BCVGEIBRWcPBxFd2fmokqyMFi4zIoZs4WiLS4TiQSeffbZjP/x9u3bMWfOnLy9h56Vn+7Kz0er02Khj7P5TuKdCAzDoKamhqymJoTE6SRBr32qJ/fkE1mW8fzzzxstTgFgw4YNWL169YjHpdc/HW8v+0IzUvKTLlBlWUZvb69pVvr5IhZVcfpYFFevZLpBeZ5B0yIJs5ukgsfnTQVInOaXRFzFhbNxXDofh5Z2STIM0NiUKg+VHmNdaLIt4Ddv3ozm5ua8vQfP86isrDSsjunJT+UgUPVKLvluHjNR9AYyhPkgcTrJyHdrU51YLIbnnnsOPT09xr4777wTS5YsGfE4vZYdAPT09OT9vCZCLln5eh3UZDKJ3t7esmgHOFZ6u5M4eTia0QIVSFmgblkgoWGuBI5E6rghcZofEgkVl87Fcfl8YojFv6qGx5KVVjjdxbWAaZqGXbt24cSJE8a+5cuXY9OmTXl7D0EQjBCj4bLyzSxQ9ZaqZquBbbFYUFFRQS1KTQqJ00lIIdz7ABAOh/HMM8+gr6/P2Pfe974X8+bNG/E4Mw5OYykXZbPZ4Ha7oaoqfD5f2XTAGguqqqHtYgJnT8YgJzL/PxYrg1sWWjBrjliwguWTGRKnE0OWNVw+H8fFc3Ek5czfptXGYtFyC+pnFM+Fn87hw4exd+9eY3vu3LnYunVr3pKUJEkyqrH4/f4RvU9mFKhmNU6wLIvq6mpy55sYEqeTjEK69wGgv78fv/rVr4wYUpZlsX37dsyePXvE4+x2O9xutylKNI2njqkkScYq2+fzmaY2X76Jx1VcOBNH64U41EFGYquNQdMiC2Y2imAL0IN8skLidHwkZQ2XW1KidPCCSRAZzJ0voXFe6UJPWlpa8PLLLxvbtbW1eP/735+3EnpWqxUej2dMi2IzCVQzh3WRO9/8kDidpKTXw8s3vb29ePbZZ402eTzP48EHHxy1yLQZAuInUmBfL9LPMExZtQkcD7GoigtnYrhyMYHBobY2O4umRRJmzCaRmgskTsdGMqnhyoU4LpyNIxEfJEoFBnPmS2hskooaVzqY69ev47nnnjPCfFwuFz74wQ/mTfBMJJzILAJV77ZUapE8GHLnlwckTicxhXLvA0BXVxeee+45Q/yKoogPfOADxkQ8HJWVlZAkqSSt9vLR+UlPTOA4zvRVCPJBNJISqW2XhopUu4PFLQslTJ8lUkzqCJA4zQ05oaLtUgIXz8Uz2u4CAC8waGwSMWe+BFEsbSWJQCCAp59+2licSpKERx55BBUVFXl5fb001EQSMUstUPVk0kgkklN3wWJB7vzygcTpJKXQ7n0AaG9vx4svvmis6q1WKx555BF4PJ5hj9Hr9HEcVzDLbjby2ZKU4zhUVFRAEISCfr9mIhJW0XI6hvbLCQweMUSJwaw5ImbfIsFqoxJUgyFxOjLBfgWXz8fR0ZrAYAMhx6cy8OfOlyBKpf9thUIhPPvss0bcPcuyeOihhzB9+vS8vL7ubo7H4/D5fBOKzy+VQLVarfB6vUgkEhkJtGZAL29ImB8Sp5McTdPQ29tbsBjJixcv4je/+Y0xiDqdTjz88MMjdqzieR5VVVVGZYFCl2jKpzDVYVkWFRUVEEUR0WgUgUDAFIlehSYcUtByKo72Kwlg0MdlGKB+hoDGeRK8lRy5zG5C4nQomqbhRmcSl8/Hh9QpBQCWA2bfIuGWBRIkS+lFKQBEIhE8++yzGZ2NtmzZgvnz50/4tVmWhdfrhSRJiEajeeueVGyBKggCqqqqoKpqUcb2saCXsyJ3fnlA4nQKoGfJF2qgOHPmDHbu3Glse71ePPzwwyOuUPW4H1mW0dPTUzBhVwhhqsMwDDweD6xWKxKJBHw+n6kG40ISCiq4dC67tQsAPBUcGpskTJspgJ3iGf4kTgdIyhraWxO43BJHODj0WtGt8I1NkqkaQUQiETz33HMZY8jGjRszOuiNF57nUVFRAZ7nCxKPXyyBynEcqqqqwLJsUb1iuaAbRMqp1etUh8TpFKHQWfJHjx7F7t27je3q6mo8+OCDIwpUPei/UIWZCylM09HjqxRFmbSlpoYjkVDRfimB1gsJRMJDxYZkYTD7Fgmz5oimEhvFhMRpyuLe2pJA2+XEkHJQAOByc5jdJGJGg/nil7PVeF6/fj3Wrl074de2WCzweDwj1jDNB4UWqOnhWmZLFk3/7ET5QOJ0CqC7MQrt1tm3bx/27dtnbHu9Xjz00EMj9n3Wg//z6coCiidMdYo1yZgVVdXQdU3G5fMJ9HZnqWXIANW1PGY0iKibLhSl17lZmKriNBFXca1dRkdrAv7e7NnmddMFNDaJqKzhTelqjcfjeO655zL+d2vWrMGtt9464dfWF+eKosDv9xe8PF2hBCrDMKisrIQoikZbVTOhzwVEeUHidApR6PhTTdOwd+9eHDlyxNjndDrx0EMPjZgkpScBhMPhjAL/46XYwlSn0O65cqHPn8TllgSuXhma4Q+kklzqpguY0SCiqpaf9OWoppI4VZIauq6nBOmN68khyXNAKvN+VqOI2U0i7A7zZk3H43E8//zz6OrqMvatWrUKGzZsmJCQHhwO5Pf7i9Z5rhACVS8ZZcbkUD05i+JMyw8Sp1OMZDJZ0C5NmqZh//79GRZUm82GBx54YMQyU3qJqYkOcKUSpjrpiQ2xWAx+v39KJEplIx5TceViAm2XEohGssfiShYG02aJmNEgwO2dnElUk12capqG3htJdFyRcb1Dzuq2BwCni0PDLSJmzhZNbzlPJBJ44YUXcP36dWPf8uXLcfvtt0/oN5pe6aNUiZT5FKj5NizkE707FcWZlickTqcg+XahZ2NwDKokSbj//vtRX1+f9fn5cA2VWphmO5dkMgmfz2eatn2lQNM0+LoVdFxJ4Hq7DHkY8eJwsZg+S0TtNB4uz+QRqpNRnGqqBn+vgs5rMq62yYgNu/hgMX2WgBmzhbL5n8qyjBdeeAHXrl0z9i1duhR33HHHhM5fFEV4vV5wHFfywvT5EKiFCsnKF9XV1RRnWsaQOJ1i6O6NYhSQP3PmDF577TXDMsDzPLZt24aGhoasz59IUL2ZhKmO3W6Hy+UCAPT19ZkuFqsUKEoqNvXqFRld12VowxQ3sFgZ1NQLqKnnUV1b3jGqk0WcxuMquq8nceO6jBudySEtRXU4nkH9dB7TZ4uoruHBlFHYRjKZxK9//Wu0t7cb+xYvXow777xzQsLU6XTC4XBA0zQEAgFTJAxNRKDq7agLlcw6UfT5gNz55QuJ0ylKIdubpnPx4kW8/PLLRokllmWxZcsWNDU1ZX1+ejmSXONjzShMdQRBgNfrBc/ziEQi6Ovrm7Ju/sHoCTNXryTg6xk+5o5hgcpqHjX1PGrrBdidbFlNOOUqTjVNQ59fwY2bgnS4pCYgVeO2uo7HdD3hzWQZ97mQSCTw0ksvZQjThQsX4u677x737y09zEeWZfh8vqLFl+bCeASqHsdZ6DKA40UvU0iUNyROpzCFjj/VaW9vx44dOwwhzDAM3vOe92DJkiVZn6/XpAOAnp6eEV3iZhamOukJEMlkEn6/f0qVm8qFcEjB1TYZN66NLIIAwOZgUVvPo7KGR0UVb5oi7cNRLuJU0zREIxr8vUl0d6YE6eA2oukwTGrRUDtdwPRZgun/DyMRiUTw4osv4saNG8a++fPn45577hl3zKIkSfB4POA4zpQxmTpjEaiSJKGiogKKoqCnp8d0dZ0pznTyQOJ0ilOseKHOzk68+OKLGe6skYpYi6KIyspKqKqK3t7erAK1HIRpOuTmz414TEV3ZxJd12V0j+A+1rE5WHgrOXgreXgrObg8nKkqAJhVnCpKyjLq70nC16vA35tEPDryd22xsqip41EzjUdVrQChjMMtdPr7+/H8889n9ICfN28e7r333nGLHL32saqqpnHjj0QuAjWXMbnUVFVVQRTFUp8GkQdInE5hilX/VKe3txfPP/98RqzrSKVZ9FV6tsGw3ISpTrqbfyq1PR0vqqoh0Kug67qMG9eT6A+M7hLlOMBzU6h6K3l4qzhIJezLbgZxqmkaYtGUVdTfo8DXk/ouRzN8MQzgreRRXc+jtn5yJaoBKc/MCy+8kDEmNTc3Y9OmTeP6nBzHwev1QhTFopeJmigjCVRRFA1XeW9vryk9P3rlAIoznRyQOCUAAD6fryir+/7+fvzP//xPhotr6dKl2Lx5c1YrhcVigdfrhaqq6OnpgaIoZStMdQa7+QOBQMELcE8WohEVN25aVP29ScRGsfTpSBYGDhcHh5OF08XB4WLhcHGwWJmCT2TFFKeaqiESURHqVxHqVxDqVxEMpu5Hs0Dr2G9aoqvrBdTU8RBLKOwLSUdHB3bs2JFx7d16661YvXr1uH4TeiMOlmXLts5xNoFaDsJUT9AiYTp5IHFKAIAh/orhqgmHw3j++eczsjznzp2Le+65J6tLJl2gxuNx2Gy2shWm6dhsNrjdbgCp76QcJ7NSkh4j6e9JIuBTEfBlL/w+HDzPwO5k4XClRKvdycJqZSFZGUgWFhw38Yku3+I0mdQQj6mIRzVEowMiNBRUEQoqUMdgqOM4wFNx08pclbov59jRXLl48SJeeeUVw6rJMAzuvPNOLF68eMyvxTAM3G43bDYbFEVBIBBAPB7P9ykXjXSBGg6HjRbUZhWmuoeNROnkgsQpYZBMJosW5B6LxfDiiy+is7PT2FdZWYnt27cbgi0dXaAyDGPa8iXjged5eDweiKJIyVJ5QElqCPgVw33t702OmNQzGoLIQLKkhKp+b0nb5jgGLAfjnmUZcBzAcgw4NlVpoKamBgCM5ENVBVQlFbKgKICq3Ly/ua3o4jOWuo/FBsRoPKYhmRz/57HZ2YxwB7PF5xaDkydP4o033jDCaTiOw9atWzFnzpwxv5bFYoHb7QbHcYjFYggEAqZLEhoPDMOguroaPM8XvLPgRKAEqMkLiVMig2IKP1mW8fLLL6O1tdXYJ0kStm7dilmzZmU8N71uXbqLf7LgcDjgdDoBkBU1n+ixlqGbru10K2MsWhwRwfEMWJaBoqhjsmpOBJs9ZQ22Ozk4XSwczlQow1Swig6Hpmk4cOAA3n33XWOfJEnYvn07pk+fPqbXSreWqqqKvr4+RKPRfJ9yydBd+QzDFDUvYSykC2hi8kHilDDQ43WKWfZEVVW88847OHTokLGPYRhs3LgRK1asMCYBPcY0EokMiUGdLKRbUWVZRiAQICtqAZETmaI1GFQQCaWslIm4+YdF3ZJrd7BGDK3zpiAtxzqjhURVVezevRvHjx839tntdjzwwANG2bpcSS8RNZmspTrpMaY+nw9utzsvrU7zTUVFBSwWS6lPgygQJE6JDHSBOt4WouPl/PnzeO211zJiXufPn4+HHnoIHo8nI8Y0PQbVrCVNJgJZUUuPqmiIx2+61aNZ3OxRFYmElnLPKxoUNVWaabiOVyPBsjfDANLCAsSbYQPpIQSSdSCkQJSYKeeOHy+xWAy//e1vceXKFWOf1+vFAw88YJR2y4XJbi0Fsmfl56PVab7RW6dSAtTkhcQpkZVSxBl1d3djx44dCAaDxr7p06fjkUceGWKZmOwCdbAVta+vz5QxX0QmmpoSqqqSii1VFA1utxeqAvT1+8HdFKIsB3Bs6p4m18LR29uLHTt2ZHiCamtrcf/99xuJPrkwWWNL05EkCV6vF8DQ5CczCVS9QxUxuSFxSgyL3gWkmK7zSCSCl19+GVevXjX2Wa1W3HfffUPiwvQsTU3T4PP5JqV4062oDMMgEomgv79/0k2Kkx0z1Dmdily4cAE7d+7MEFkjVQXJBs/zcLvdkCRp0lpLgdQY6/F4DKNEtnAiMwhUQRBQVVVFC7opAIlTYkRK0T/Z4XBg165dePvtt419LMti06ZNWLp0acbAlB647/f7Td+JZTxwHAe32w2LxQJVVREMBjOKhhPmhsRpcVFVFfv27cOBAwcy9q9fvx5r1qzJSdgwDAOHwwGHw2HE4QeDwUm5MNRrhCqKMqoXqpQClWVZVFdXg+O4or0nUTpInBKjUsyaounJT3v37sUbb7yRYbldvHgxNm/enJGhyfM8KisrwbLspG4LKkkS3G43eJ4nV38ZQeK0eMTjcfz2t7/NqAAiiiK2bNmCxsbGnF4j3YWfSCTQ19c3aRMT9Tarsiyjt7c3J/FdCoGa/p7E1IDEKTEiesB5JBLJ6D1dCLJ1furs7MRLL72UYSmsq6vDtm3bYLfbjX0cx6GyshI8z5c8JqrQkKu/vCBxWhx6e3vx0ksvZYxTXq8X27dvzylGcbALv7+/f9IudIGBdp+JRAK9vb1j8o4VW6BWVlZCkqSCvgdhLkicEqOiC9RgMJiRrJRPRmpJGg6H8dJLL2UU7Lfb7bj77rvR0NBg7GNZFhUVFRBFsajlsEoBufrLBxKnhefixYt49dVXMyycc+bMwT333DOqqJlKLnwg9Xm9Xi8sFgtisRj8fv+4wraKJVC9Xi+sVitl5k8xSJwSY6Kvry/vImgkYaqTTCbx5ptv4tSpUxn7ly1bho0bNxruHoZhUFFRAUmSEI1G4ff783quZiPd1Z9MJhEMBidlwkY5Q+K0cGiahn379mH//v0Z+9etW4e1a9eOKmbsdjscDseUcOEDqfGxsrISoijmxRtWaIGa3nyFhOnUgsQpMWb8fn/eBFAuwlRH0zScOHECu3fvzrBqeL1e3Hvvvaitrc3YZ7VaEY/H4fP5iprQVQrsdjucTidYloUsy+jv7y/r/t6TCRKnhSEUCmHnzp1ob2839gmCgC1btozaitRqtcLpdE6pRR3HcaioqIAgCHn1ghVKoDocDrhcLhKmUxQSp8SY0Us3TVT8jEWYptPT04NXX30VPT09xj6WZbF27VqsXr3a6LOsF2oeS7B/OaO7J+12O1iWRTweR39//6S2BJUDJE7zT0tLC15//fWMMcjr9WLbtm1GEflsSJIEl8sFQRCmVDiMnjTKcVxBvF/5Fqg2mw0ejyc/J0eUJSROiXGhF78fr/AZrzDVSSaT2LdvX0bbUyCVLHXvvfcaA5u++lYUBT6fb0oINZZl4XQ6YbPZwDAMotEogsHgpGtUUC6QOM0f8Xgcu3fvxpkzZzL2z507F3ffffew8aWiKMLlckEURaiqinA4jFAoNOk9KkCq+oDH4zE6/xXKQpwvgao3WCFr6dSGxCkxbsZbpH+iwjSdjo4O7Ny5M8NFxfM8Nm3ahMWLF4NhmKINzmaD4zi4XC4jmUAXqcVsqkCQOM0X165dw6uvvprRzlcQBGzatAmLFi3KKmYEQYDT6YTFYoGmaYhEIpM62Wkw6Ytzv99f8NJzExWooiiisrKShClB4pSYGMlkEj09PTkP9vkUpjrDWVNmz56Nu+++GzabDYIgoKKiAhzHIRQKTal+9YIgwOVyQZIkaJqGWCxGltQiQuJ0YiiKgv379+PgwYMZls7BXpJ0RFGEw+GAxWIBAESjUfT390+ZhRnDMPB4PLBarZBlGT6fr2iffbwCled5VFVVGWFZxNSGxCkxYXLtIlUIYZrOhQsX8Prrr2d0ibJYLLjrrrswd+7cjFJTEymhUq4MnrBjsRhCoRAV8i8wJE7Hj9/vx6uvvoquri5jH8MwWLt2LdasWTNEyFgsFjgcDoiiaHgLQqHQlFqIcRwHr9cLURQRjUYRCASKPs6NVaByHIeqqirq/kQYkDgl8sJohZwLLUx1wuEwXnvtNVy5ciVj/6JFi7Bp0yaIomgUn04mk+jt7Z0y1hQdnucNVyfDMIjH4wiFQpTdXyBInI4dTdNw6tQp7N69O0NYut1u3Hvvvaivr894vtVqhcPhgCAIhvs+FApNuWtbFEV4vV5wHFfyZiS5ClSWZVFVVZXR9Y8gSJwSE0Yv9TFc2aZiCdP08zlx4gT27t2bMbE5nU5s3rwZjY2NGWVK/H7/lBRmHMfB4XAYiVOyLCMUCk2ZmNxiQeJ0bIRCIbzxxhu4fPlyxv70BaaOzWaDw+EAz/NQVdUQpVMlpjQdq9UKj8cDTdMQCAQyPEilYjSBSsKUGA4Sp0ReGE6gFluYppPNJQikYlE3bdqE2tpaIyu0v79/SpSUyQbLsoZIZVkWyWQSkUgE4XB4SoU9FAoSp7mhqiqOHz+Od955J6OqRnpoDpBaVNlsNthsNnAcB0VREA6Hp/TvVS+bl0wm4fP5TBXGMJxAZVkWlZWVRgMVgkiHxCmRNwYLVJfLVTJhqqMoCg4cOIADBw5kTFwsy2LVqlVYt24damtrIQgCIpEI+vr6puwExzAM7HY77HY7OI4zYvbC4fCUKMFVKEicjk5nZyfeeOONId/RrFmzcM8998But0MURdjtdiMcJZlMIhwOIxKJTNlrlmVZeL1eSJKEeDwOv99vSqvxYIEaiURImBIjQuKUyCu6QFUUBRzHlVSYptPb24s333wTHR0dGfudTiduv/12rFmzBlar1ZSWh1KQnlgCpGKKw+EwYrHYlBUC44XE6fDEYjG88847OHHiRMZ+SZKwceNGLFmyBHa73ai4oR8TDoenZChOOpIkwePxgOM4hMNh9PX1lfqURiRdoOrzA0EMB4lTIu+kC9TBLvVSomkaWlpasGfPniEu/JkzZ2Lr1q1obGwEAPT19SESiZTiNE2FIAiw2WywWq1gWdaI64tEIlNewOcKidOhaJqGc+fOYc+ePUNinBcuXIg77rgD1dXVsFqtYBjG+N2Fw+Epl+SUDafTCYfDYar40lzgOA41NTVUx5QYFRKnREEYLUmqlCQSCRw4cABHjhzJcIGxLIuVK1di69atsNvtJSvDYkYYhoHVaoXdbjcsWIlEAtFoFNFo1JSuRLNA4jQTn8+HXbt2DfFiVFRU4L777sOCBQuMBJl4PI5IJEJJejdJd+MnEgn4/f6yEesUY0qMBRKnRMEws0AFUglTb775Jtra2jL22+12vPe978Xq1auNzioUczmAKIqw2WywWCxgWRaapiEejyMajZLbPwskTlPIsowDBw7g8OHDGYsZnudxxx134I477gDP81AUBdFolKzzg5AkCV6vFyzLll0jERKmxFghcUoUFLMLVE3TcOnSJezevTujBSqQSsZ46KGHUFdXN6Wz+UfCYrHAarUaSSqqqiIWiyEajU75mECdqS5O9Wtsz549QwTVwoUL8b73vQ8ej4d+NyOgZ+Orqlp2pe+oXBQxHkicEgVHF6ijFeovJbIs49ChQzh06FCGm4xhGKxZswZ33nknLBbLlOsqlSu6299qtUKSJACpSgmxWAyxWKysJtN8M5XFaUdHB95++210dnZm7He73bj//vsxd+5csriPQHq3p3Jz4wOp86+srCRhSowZEqdEUdAFqizL6O3tNW2MYiAQwO7du9Ha2pqxn+M4rFmzBps2bYKqqtTycwQ4jjOEqu7GU1UV8XjcEKtTadiZiuL0xo0bePvtt4eEzLAsiw0bNmDdunVQFMW044AZsFqtcLvdYFkWwWBwiGfH7PA8j8rKSsrKJ8YFiVOi6JRD29DLly/jzTffHOKG5DgOa9euxbp166Bp2pQSWeOB53lYLBZYLBYIggCGYaBpGhKJhCFUzfw7yAdTSZwGg0G8++67OHPmzJDH5s6diw0bNsDr9ZbgzMoHlmXhdrthtVqhKAoCgUDZeR5EUURFRQVYli31qRBlColToiQoigKfz2fqRKNkMonTp0/j4MGDQ9ru8TyPNWvWoLm5OaOdIjE8LMtCkiRYLBZIkmRMXMlk0nD9JxKJSSf4J7M4ZVkWoigiHo/jrbfeGpLsBADTpk3Dhg0bMG3atBKdZfmQbi2NRqPo6+srO+uyJEmoqKigclHEhCBxSpSMcgnuTyaTOHXqFA4ePDgkKYrneaxatQpLly6FzWYr0RmWJ7pQtVgshutP0zTIsoxEIjFpxOpkEqe6GJUkyYiD3LVrF955550hmfVVVVXYsGEDGhoaSKiMwmBraV9fX9nULk3HZrPB7XbT/5uYMCROiZKiF5EuhzqGI4lUQRDQ3NyM5cuXk0gdBzzPZ4ieySRWy1mcDhajegxxPB7H7t27sXfv3iGLS7fbjVtvvRVNTU0kUnLAYrHA7XaD47iytZYCgMPhgMvlKvVpEJMEEqeEKejr6yubUk3JZBInT57EwYMHh3SREgQBy5Ytw4oVK0ikToDhxCqQ+v5lWTZEqyzLphas5SJOWZaFIAjGLdv33tPTg3feeQdHjx4dIkrtdjvWrl2LRYsWURJMDkwWaykwUOqKIPIFiVPCNJRbRqosy4ZIHWz5FQQBixYtwrJlyygBJA/oYlW33vE8n2GVSxes+s0s1iczilNdiOrfpyAIGYJS0zQkk0kkEgkkEgl0dHTg4MGDaGlpGfK9SpKE1atXY9myZVRkPUcmi7UUALxeL6xWa6lPg5hkkDgtE+LxOI4dO4ZDhw7h4sWL6O7uhqqqqKurw7p167B9+3ZYLBbj+aqq4ty5czh06BBOnz6NGzduIBKJoLKyEkuXLsWDDz6ImpqaIe9z6tQpfP3rXx/2PJqamvDNb34z62Pnzp3DgQMHoGka7rzzTkyfPn3MnzMSiSAQCIz5uFIiyzJOnDiBQ4cOZQ1PmDlzJpYtW4bGxkbKXs0TDMNkWPmyCVZVVZFMJofcFEUpqqW1VOKUYRjwPG/cOI4z/k7/HaYL0XRxr2kaWltbceTIkSGtRoFURvayZcuwatUqo7YtMTIcx8Hlck0KaynDMKioqIAkSUapwFzYsWMHzp49i7a2NvT19UGWZXg8HixatAgPPPAAZs6cmfH8np4eHDp0CC0tLbh48SKuXbsGTdPwjW98A/Pmzcv6HqWex4iJQ5Vxy4S9e/fixz/+MYCU2GlubkY0GsX58+fx9NNP46233sLXvvY1uN1uAKk6g1/96lcBpHpWz5s3DyzL4sKFC3jttdfw1ltv4Qtf+AIWLFiQ9f1qa2uzPlZbW5v1+b/73e/w7//+78ak/8orr+Dzn/88mpubc/6MmqbBZrOBZdmyKnYvCAJWrlyJpUuX4vjx4zh8+HCGSG1vb0d7ezucTieWLFmCxYsXk8t/gujlqNLrzQ4WrLoYy1ZNQRep+r1ec1O/LwcrFsuy4DhuyH26GB2MoiiQZXmIpTmdZDKJs2fP4siRI/D7/UNew+l0Yvny5Vi0aBGJ0jHgcDjgdDrBMAwikQj6+/vL4neWDZZlUVFRAVEUxyRMAeB//ud/EIvF0NDQgFmzZgFIjZG7d+/G22+/jb/8y7/EihUrjOfv27cPP/vZz8Z1nqWYx4j8QJbTMuHNN99ES0sLtm3bhvr6emO/3+/Hd77zHVy+fBkbN27Epz/9aQBAZ2cn/vM//xMPPfQQFi1aZDxflmX8x3/8B3bt2oWqqir84Ac/yOjeoa84N2/ejCeeeCKnc4vH4/jEJz6BdevW4fHHH0cikcCPf/xjdHV14Qc/+MGYPmd6sX6fz1eWNTATiQTOnTuHEydOoKenZ8jjLMuiqakJzc3NqK2tpaSRApOrBTEdTdMyxKp+r9e2Tf8723b6sDqc5ZRhmIwby7JZ/9a3OY4zRKj+eDbGazGORCI4ceIEjh8/ntUDUFtbixUrVuCWW24hD8AYkCQJbrcbPM9DlmX09fWVdRMPQRBQUVEBjuPGLEwB4OzZs5gzZ86QReOrr76Kn/zkJ/B6vfjXf/1X4zd28OBBnDp1CnPnzsUtt9yCf/u3f8Pp06dzspyWah4jJg5ZTsuEzZs3Y/PmzUP2e71efPzjH8eXvvQl7N+/H8lkEjzPo66uDl/84heHPF8QBPzhH/4h9u/fj56eHpw/fz5DvI6Hq1evIhaL4WMf+5hhEXzsscfw+c9/HqFQaEyB8nqRdkEQUFVVBb/fX3YDuSiKWLp0KZYsWYLr16/j9OnTOHv2rGEl0UMuzp07h5qaGixbtgzz5s2jFn8FQs/4z1ZTVxd66cIv/Z7jOKN5wESZaJ1PTdMMK28ikRginPXHxmJv0DQNXV1dOHXqFM6ePZt1MThnzhysWLEC06ZNo4XUGOA4Dm63GxaLBaqqllXS53BYLBZ4PB5DOI7n9zCct+7ee+/Fjh070NnZiWvXrmHGjBkAgNWrV2P16tXjP+kcyec8Rkwcmg0nAQ0NDQBSVtFgMDhqAo4oiqivr8fFixfh8/km/P56KMGZM2ewatUqAKnVsSiK43Jf6wOe3pe5r69vSFZ8OcAwDKZNm4Zp06bhtttuw/nz53Ho0KGMpK8bN27gtddew969e7Fo0SIsXbrU+D6JwqO78AfX6ByMbqnMZtHM9nc6eix4PB4fIhxHs8Lqf+v3+SIUCuHs2bM4c+ZMVtc9z/NYuHAhVqxYAY/Hk7f3nSpMJhe+jtPphNPpLOh76KK3FAv1fM9jxMQgcToJ6OrqApASc7ms7lRVNdzNw008nZ2d+MUvfoFgMAin04kFCxZg+fLlWd15lZWVWLlyJb73ve+hubnZyGLfvn37hN1/DMPA4/GA5/khrUTLCYvFYiSPXL16Ffv27cPly5eNx2OxGA4fPozDhw9j1qxZmDdvHubMmZOR5EaUDl1YjCfMRHfrZxOBxUSWZVy6dAlnzpwZ0vNex2azobm5GUuWLKEM7HEw2Vz4wMAYXOjfw5tvvolr166hvr4+a7LueDDLPEaMHRKnk4Df/OY3AIDly5fnVMrlrbfeQl9fH1wuF+bPn5/1ObrbOZ1Zs2bhs5/9bEbMq86nPvUp/OxnP8OhQ4cgCAIefPBBPPLII+P4NNlxOBwQBAE+n69sEqWyIcsyamtr8dhjjxl9yA8fPpzhcm5ra0NbWxtYlsWsWbPQ1NSEOXPmUPIJMWY0TcP169dx5swZnD9/fth2wdOnT8eiRYvQ1NRE4SXjgOd5uFyuSeXCB1IGj4qKCgiCMK740pF48cUX0d7ejng8jqtXr6K9vR1erxef/vSn8yYGzTaPEblDo1CZc/jwYbzxxhvgOA6/93u/N+rze3p68NOf/hQA8MEPfnCImLXZbLj//vuxbt064+JtbW3Fk08+iZaWFnzjG9/AP/zDPwxxc9jtdvzJn/xJfj5UFjRNgyRJqK6uhs/nG9UNa2Y0TUN/fz94nsd9992HrVu34uDBg3jnnXfQ29trPE9VVbS2tqK1tRUsy2L27NloampCY2Nj1gx0gtDp7+833PZ9fX1Zn+NyubBw4UIsWLCAQknGCcdxcDqdsFqtk8qFD6TCv7xer1H1Id/xxseOHcOJEyeM7crKSnzqU5/CnDlzJvzaZp3HiNyhbP0ypqOjA1/+8pcRDofx0Y9+FPfdd9+Iz4/FYvja176GS5cuYc2aNfjLv/zLnN9LVVV8/etfx5kzZ/ChD30I73//+yd6+uNGVVX4/f4hHWrKFUmS4HQ6IQgCLl26hMOHD+P06dPDtnTlOC5DqFLhc3NTrDqngUAAra2tuHjxIq5evZr1OYIgoKmpCQsXLqQEpwnAsiwcDgfsdjsYhkE8Hkd/f/+wlulyw2azwe12F+X3EQ6H0dbWhmeeeQYnTpwYdX752te+Nmq2/nCYaR4jRoYsp2VKb28vvvWtbyEcDmP79u2jCtNkMol//Md/xKVLl7BgwQKj5FSusCyLBx54AGfOnMGxY8dKelHrNfaCwSBCoVDJziNfxONxxONxWCwWNDQ0YO7cuZBlGadOncLJkydx4cKFjELdiqLg4sWLuHjxInieR2NjI5qamjB79mxyyU4hVFXF9evXcfnyZVy+fHnEmNaZM2di4cKFmDt3Li1mJgDDMLDb7XA4HGBZFolEAv39/WUfV5qO2+2G3W4v2vvZ7XYsXLgQX/jCF/ClL30JTz31FJYtW4Zbbrkl7+9lpnmMGBmaycqQ/v5+fOMb30BPTw/uuOMOPP744yM+X1VV/PCHP8SxY8fQ0NCAv/qrvxqXW7iurg4ATNHBiWEYuFwuCIKAQCBQ1nGoOrFYDLFYDDabzSh0vmTJEvj9fly4cMHokJJuMU4mk2hpaUFLSwsEQcCMGTMwc+ZMzJw5ExUVFWQZm2TEYjG0tbXh8uXLaG1tHdF74PF4DLd9obOspwL6dclxHJLJJAKBQNl2d8oGy7Lwer1j7viUL3iex4YNG3Dp0iUcOnSoIOIUMNc8RgwPidMyIxqN4tvf/jauXr2KtWvX4o/+6I9GHUR+8pOf4J133kF9fT2+9KUvjXtVrAf4myWDXNM0WK1WCIIAv98/aVxqkUgE0WjUsNBUV1fD7XZj3rx5iEQiaG9vx/nz53Hp0qUMi40sy4YVDUhNpjNnzjQEq8vlKtVHIiaA3+83/q9668bhqKioQGNjI+bOnUsNHvKE1WqF0+kEz/NQFAWBQKAsS9uNhCRJ8Hg84y6sny/0RVQhK7OYbR4jskPitIyQZRnf/e53cfHiRTQ3N+Mzn/nMqFmNv/jFL/Daa6+hqqoKX/7ylyeU+LBv3z4AQGNj47hfI5/oAyjP86iqqirbeqjZ0DQNoVAIkUjEiG2rrKyE0+mEzWbD7NmzkUwm0dbWhpaWFly6dGmIOI9EIhnZqm6327Cqzpgxg0oFmRA9We769eu4fv062tvbR7TwsCyLGTNmoLGxEbNnz6bEpjxitVqNKiGqqqK/vx/hcHhSeGnSGVy/tJQLmtOnTwMYvr1oPjDbPEZkh8RpmaCqKr7//e/j1KlTWLhwIT73uc+NGl+4Y8cOPP/88/B4PPjyl7+MqqqqUd9n586dWL9+fcZgpWkaXnvtNbz00ktgGAb33nvvhD9PvtFr8UmSNGnc/AAyJkWHwwGbzYbKykrIsoxQKIQ5c+Zgzpw5SCaTRjmW9vb2rMk3fX196Ovrw8mTJwEAVVVVhlidNm0aVQAoAclkEt3d3YYYvX79+qgLLKvVaojRWbNm0f8tz9hsNjgcDvA8D1VVjdj2yTKm6HAcB6/XW9Tfj970Yd26dUYVACB1HezcuRO7d++GKIrYsGHDhN6nXOcxYgDK1i8TfvOb3xgloNauXTus1evxxx+Hy+VCa2sr/uqv/gqapmHevHlZa7oBwF133ZXRTu6JJ56Az+fDjBkzjCzjtrY23LhxAwzD4KMf/Si2bt2a3w+XJ3R3VDKZnFRu/nT0LGGbzQaWZZFMJg0LazrRaBQdHR3o6OgY1foGpMS91+tFdXW1cauqqiLrah5Iz9aPRCIZQrSrqyunskNVVVVobGxEY2MjuesLgJ7oZLfbwXEcFEVBOByelJZSILMNaTHd+Lt27cK//Mu/wOl0Ys6cOXA6nQgGg2hra4Pf74cgCHjiiScyxKnf78f3vvc9Y7ujowPRaBQzZ840XPMrVqzAww8/bDynnOcxIgVZTsuE9Kz0/fv3D/u8Rx55BC6XK2NQPX/+PM6fP5/1+YsXL84Qp9u3b8exY8fQ0dGBEydOQFEUeL1e3H777di6dWvBgtTzwWA3v25xnEzoltRgMGjEpHo8HjidzozJ1Gq1oqmpCU1NTQCAYDBoWFXb29uHiFlN0+Dz+eDz+TKKVusxr+mC1eVykTgaBf3/5Pf7cf78eVy/fh2tra3D1hwdjMfjQX19Perr69HQ0EAJTQWCZVlDlOqLPT08aDKKUiBV3za9k2Axr+VFixbhoYcewunTp9HW1mbUe66pqcG6detw3333GQlLOrIso6WlZchrtbe3G39PmzYt47FynseIFGQ5JSY1sVgMgUBgUhTFzgbDMIYbkuM4qKpqiNThPrMuRHWrakdHx5hK4YiimCFY9VhYi8Uy5USrLMsIBALw+Xzw+/3GfSAQyLnVKcdxqK2tNcRoXV0d9fIuMHqrZ5vNBoZhjDCZ4WoLTwZK4cYniPFC4pSYtOjuKkVR4Pf7J1UtwmwMjpWLRqMIh8OjdtPSmxr09PSgu7vbuI21TA7P80ZyRbabLqDLCUVREI1GEY1Gje4/fr/fEKLBYHDMr2m32w0hWl9fj+rq6rL7XsoVURRht9uNhVQikUAoFJpUJaGyUSo3PkGMFxKnxJRAz34fj5goNywWCxwOh2EhicfjCIfDY5qA9e9rsGCdaIkXu92eIVhtNhtEUYQgCMZN307fn49e25qmQVVVKIqCWCyGSCRi3HTxOXjfREWL0+lEbW0tqqur4XK5UF9fD6fTSeKgyNhsNtjtdqMBQTweRygUmjRd5oZDrwddzKL6BJEPSJwSU4pEIoFAIDCqNXEyIAgC7Ha70fdbT/KIRCLjDnOIx+NDBGsxvk+e54eIV4ZhoKqqcVMUZcTtQoV2cBwHj8eDiooKeL3ejJsgCEVrX0pkwnEc7Ha7kTw4Fm/CZEAURXg8HvA8T9ZSouwgcUpMGfQBWtO0SdP6NBdYljUsR3qR7VgshnA4nJdQB03TjN7i+vcaDAYztss9MU0QBOM71IWnLkadTueIll0Sp8XFYrHAZrMZmdzJZNJYlE2F6Y6spcRkgMQpMWWZSlZUneEm7mg0WtCkMb3k1WDxGovFIMsyEokEZFk2bolEouBJbBaLBVarFTabLeM2eJ/ehWy8kDgtPBzHGf+vQizAyoV0aylBlDMkTokpyVS1ouroLk+r1WpM5vF43IizNMOwoChKhmgd/DeQsgrrN47jsv6dbZ8kSUVLQiJxWhgYhoHVaoXVaoUkSQBSiyA9ZniyVujIBllLickGiVOCwNS0ouro1lRJkow4zlgshmg0OukTRooBidP8olu89Yz7qf57JWspMRkhcUpMeaa6FVWHZVlDqOqZ/umllCZjx61iQOJ04oiiaISj6OWQzGbpLzZkLSUmMyROCWIQU9mKqsNxnBF7qVtkdJdpNBrNucA8QeJ0vPA8b8T86iEYiUTCWCxNJbf9YMhaSkx2SJwSRBrpVtRQKIRQKDQlrTLpCIJgxPbpIkGWZcRiMcTj8SmVcDIeSJzmjiRJkCQJFoslY1GkC9KpvGAEUt4Nl8tFHcSISQ+JU4IYAUVR0NfXN+k7yOSKLhwsFoshVBVFQTweN8QqDSmZkDgdHoZhjN+TJElGSa5kMmnEkVI4SQqbzQaXy5WXhhQEYXZInBJEDsTjcfT19U15y006giAYwkIvtaTHAsZiMcRisSntetUhcZoJx3HG70YURcNToVvjY7EYXWdpiKIIt9s9oXJmBFFukDgliFEgV//ocBxnWFX1rH8gFSOou/4TicSU/N6mujhlGAaSJEEUxQx3vaqqGRZ3WshkMtiFT12eiKkEiVOCGCPk6h8ZXYzo1jHdDalbx6aaWJ1q4jRdjEqSBJ7nDVGlKIphHZ2KZZ9yxW63j9p5jCAmMyROCWKckKs/N3iezxArU02sTnZxOpoY1f+/8XicqjyMArnwCSIFiVOCGAfprv5wOIxgMDgphVUhGE2spneCmgzCf7KJU0EQjJsoikPEaHoox2T4/xUDcuETRCYkTgkiDyiKgmAwiEgkUupTKTuGE6tAKi4xmUxmiNZyEzzlLE7Thah+SxdNJEYnBsMwcDgcsNvt5MIniDRInBJEHkkmkwgGg4hGo6U+lbKF47gMy5wgCBkTt25hTbeuJpNJ0ybUlIM4ZVkWPM+D5/msFlEgJUT171xfKJj1Oy8H7HY7HA6HUZKNIIgBSJwSRAGQZRn9/f2U9JEn0gWrfhs8qetWVv2mKIrxdymHObOIU4ZhDAGafuM4bojVThei6SEWJETzg9VqhdPppO5OBDECdHUQRJ7RNA2CIKCyshLxeBz9/f1USHyCKIpiZHrrcByXVWyJopj1+HQLq6IoQ+7LHY7jDKGZfq8L0MFiXtM0wy2fLuZJiBYGSZLgcrko2YkgcoAspwRRINKTGqLRKILBIMXkFQGGYYYVriPF9WUTrKqqQtM0437w3/ptJMZiOWUYxrixLJt1O5sAHe1zZbMm02+xOAiCAJfLBUmSAFCyE0HkAolTgigw6Zn9kUgEwWCQLFMlYjhxN3jfWJJTBgvVwUNqeo/4bOeTLj7HwnAW4Gzimig+PM/D6XTCarUCIFFKEGOBxClBFBm9/FQoFCKRalJ0schx3LDWzOEsm4NfR3en66EDg4fcwZbYkay0qqoaNxq6zQnP83A4HLBarcailEQpQYwNEqcEUSJ0S2ooFJoUMY9EdsySEEUUFkEQ4HA4YLFYSIwSxAShhCiCKBEMw8But8NmsyEWi1FMKkGUIaIowul0GjGlBEFMHBKnBFFiGIaB1WqF1WpFLBZDKBRCIpEo9WkRBDECFosFDofDqA5B7nuCyB8kTgnCJGiaBovFAovFgkQigWAwSHVSCcJkWK1WOBwOoySULkpJmBJE/iBxShAmQZ/cNE2DKIqorKyELMsIhULUcYogSozNZoPD4TCqL5AoJYjCQeKUIExGukgVBAFerxdOpxPhcBiRSISytAmiSLAsa8SFD25iQKKUIAoHiVOCMCnpkx/P83C73XA6nYhGowiHw5Q8RRAFQhRF2O12yrwniBJB4pQgygjdkmO32xGPxxEOhzNaehIEMT70xES73U4tRgmixJA4JYgyRNM0SJIESZKgKAoikQgikQjVSyWIMcLzPOx2O6xWq9GlizLvCaK0kDgliDIkfeLkOA5OpxMOhwPxeByRSISsqQQxCrqVVC8FlQ4JU4IoLSROCWKSwDCMUYpKt6ZGo1GKTSWImwiCAKvVCpvNRlZSgjAxJE4JYhKiW1OdTidkWTaEqqqqpT41gigqHMfBZrPBarUaZaDSIWFKEOaDxClBTGL0clRutxsulwuJRMJw+1NJKmKywrKs0XUt3W1PVlKCKA9InBLEJCZ9ImYYxkii0jQNsVgMkUiEulARkwI9rMVqtUKSpIx6wfrfJEwJojwgcUoQUxC9bI7VaoWqqohGo4hGo0gkEqU+NYIYE5IkwWq1wmKxGHGk6ZAgJYjyg8QpQUxx0munKoqCWCyGWCyGRCJBrn/CdOgWUkmShhWkBEGUNyROCYIw4DjOEKqqqiKRSBhilZKpiFLBcZxRiUIURbKGEsQkh8QpQRBZYVnWEAQAMoQqlaciCo0gCMbvjzo2EcTUgsQpQRA5IYoiRFGEy+VCMplELBZDPB6nhCoiL+gJe7rLnuM44zHKsieIqQWJU4IgxoSmaeB5Hg6HAw6HA5qmIZFIIJFIIB6PU1IVkRMMw0AURUiSBFEUIQjCsAKUhClBTC1InBIEMSYGC4X0ElVOp5PEKpGVsYhRgiCmNiROCYLIKyRWCYDEKEEQ44fEKUEQBSWbWJVlGbIsI5FIQJZlSrCaBAiCYNxEUQTP8yRGCYIYFyROCYIoKrpFTRRF2O12AMgQrLpoJcFqXtJFqCAIJEQJgsgrJE4Jgig56YJVZ7Bg1S2s1BigeLAsC57nwfM8CVGCIIoGiVOCIExJNsEKAIqiIJlMIplMZvxNltbxwTAMOI4zRGj6jbovEQRRCkicEgRRVnAcB47jIElSxn5N07IKV0VRoKrqlO5wxbIsWJbNKkLT64kSBEGYARKnBEFMChiGMQRXNnTxqqpq1vtyFLG64NTv0/9Ovyc3PEEQ5QSJU4IgpgS6eB0NTdOgqio0TTNu6dvD/a3fBr+WLgz1FpzZ6sTqN11IDv57pMcIgiAmG4xG2QUEQRAEQRCESaBod4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTAOJU4IgCIIgCMI0kDglCIIgCIIgTANf6hMgCIIwA/F4HMeOHcOhQ4dw8eJFdHd3Q1VV1NXVYd26ddi+fTssFkvGMR/84AdHfd3Fixfjq1/96pD9586dw3PPPYfz588jmUxixowZ2LJlC+64445hX+vcuXM4cOAANE3DnXfeienTp4/5cxIEQZgdRtM0rdQnQRAEUWp+97vf4cc//jEAYObMmZg+fTqi0SjOnz+PaDSK6dOn42tf+xrcbrdxzI9+9KNhX+/w4cMIBoN4+OGHh4jY/fv345/+6Z+gaRoWLlwIp9OJkydPIhwOY9u2bfiDP/iDrOf37//+79CHbEEQ8PnPfx7Nzc35+PgEQRCmgcQpQRAEgDfffBMtLS3Ytm0b6uvrjf1+vx/f+c53cPnyZWzcuBGf/vSnR32tcDiMT37yk5BlGd///vczXi8UCuFP//RPEYlE8NnPfhbr1q0DAAQCAXzlK19BZ2cnvvKVr2DJkiXGMfF4HJ/4xCewbt06PP7440gkEvjxj3+Mrq4u/OAHP8jjt0AQBFF6KOaUIAgCwObNm/GHf/iHGUISALxeLz7+8Y8DSFk8k8nkqK/1zjvvQJZlNDU1DXm9119/HZFIBKtXrzaEKQB4PB585CMfAQDs2LEj45irV68iFovhYx/7GFwuF6qqqvDYY4+hs7MToVBoXJ+XIAjCrJA4JQiCGIWGhgYAgCzLCAaDoz5/z549AIBNmzYNeezQoUMAgPXr1w95bOXKlRAEASdOnEAikTD266EEZ86cMfadPXsWoijCZrON4ZMQBEGYH0qIIgiCGIWuri4AAMdxcDgcIz63p6cHZ8+eBcdx2LBhw5DH29raAABz5swZ8hjP85g1axYuXryIa9euYfbs2QCAyspKrFy5Et/73vfQ3NwMWZZx8uRJbN++HSxLNgaCICYXNKoRBEGMwm9+8xsAwPLlyyEIwojP3bNnDzRNw4oVK+B0OjMei0QiCIfDAICKioqsx+v7e3p6MvZ/6lOfwu23346WlhZcvXoVDz74ID784Q+P6/MQBEGYGbKcEgRBjMDhw4fxxhtvgOM4/N7v/d6ozx/JpR+LxYy/JUnKery+P/25AGC32/Enf/InOZ83QRBEuUKWU4IgiGHo6OjAD3/4Q2iahscff9xwsw/HpUuX0NHRAbvdjlWrVhXnJAmCICYZJE4JgiCy0Nvbi29961sIh8PYvn077rvvvlGP0a2m69evz+r+Ty/iH4/Hs76Gvn9wwX+CIIipAolTgiCIQfT39+Mb3/gGenp6cMcdd+Dxxx8f9RhVVfH2228DAG6//fasz7HZbEZ2vc/ny/ocfX9VVdV4Tp0gCKLsIXFKEASRRjQaxbe//W1cvXoVa9euxR/90R+BYZhRjztx4gT8fj+qq6uxcOHCYZ+nl6W6dOnSkMeSySTa2togCAKmTZs2/g9BEARRxpA4JQiCuIksy/jud7+Lixcvorm5GZ/5zGdyLtWku/Rvv/32EcXsypUrAQDvvvvukMcOHz4MWZaxZMkSiKI4jk9AEARR/pA4JQiCQMot//3vfx+nTp3CwoUL8bnPfQ48n1tBk3g8jv379wMY3qWvc9ddd8FqteLgwYPYt2+fsb+vrw///d//DQDYvn37OD8FQRBE+UOlpAiCIAC88sorhsB0Op34yU9+kvV5jz/+OFwuV8a+AwcOIBaLYe7cuZg+ffqI7+NwOPDHf/zH+Od//mf80z/9ExYtWgSn04kTJ04gHA5j69atWLp0aX4+FEEQRBlC4pQgCALI6FGvi9RsPPLII0PEabpLPxfWr1+Pr3/963juuefQ0tKCZDKJ6dOnY8uWLXjPe94zjrMnCIKYPDCapmmlPgmCIAiCIAiCACjmlCAIgiAIgjARJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjANJE4JgiAIgiAI00DilCAIgiAIgjAN/z8+up7eRUQdGQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "theta = np.linspace(0, 2*np.pi, 101)\n", "fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})\n", "\n", "nus = [0.5, 0.75, 1.0, 1.25]\n", "for nu in nus:\n", " sigma = 1 - nu *(1 - np.exp(-theta*1j))\n", " ax.plot(theta, abs(sigma))\n", "\n", "ax.legend([r'$\\nu={}$'.format(nu) for nu in nus])\n", "ax.set_title(r'$|\\sigma|$ for upwind scheme')" ] }, { "cell_type": "markdown", "id": "084f16eb", "metadata": {}, "source": [ "#### CFL condition 의미\n", "CFL 조건 ($\\nu \\leq 1$)의 물리적 의미는 수치적인 Domain of Dependence가 이론적인 Domain of Depence 보다 커야 한다. 즉 파동의 전파 특성을 계산 과정에서 충분히 반영할 수 있어야 한다. \n", "\n", "\n", ":::{figure-md} CFL_condition\n", "\n", "\n", "Physical meaning of CFL condition (thevisualroom.com)\n", "::: " ] }, { "cell_type": "markdown", "id": "80b95fee", "metadata": {}, "source": [ "## Convergence\n", "수치적으로 구한 해가 완전해가 되려면 다음 두 조건을 만족해야 한다.\n", "\n", "- Consistency : 격자와 시간 간격을 줄였을 때 차분식 (FDE)가 편미분 방정식 (PDE)을 근사해야 한다.\n", "\n", "- Stability : 이론해와 차분해의 오차가 증폭되지 않아야 한다.\n", " \n", "이 두 조건을 만족할 때 수치적으로 구한 해가 이론해를 수렴한다. (Lax theorem)" ] }, { "cell_type": "markdown", "id": "6829b866", "metadata": {}, "source": [ "## 몇 가지 수치 기법\n", "\n", "### Lax Friedrich Scheme\n", "Central 기법에서 시간 차분시 $u_j^n$ 대신 평균값 $(u_{j+1}^n + u_{j-1}^n)/2$ 을 넣는다.\n", "\n", "$$\n", "u_j^{n+1} = \\frac{u_{j+1}^n + u_{j-1}^n}{2} - \\frac{a \\Delta t}{2 \\Delta x} (u_{j+1}^n - u_{j-1}^n).\n", "$$\n", "\n", "### Lax Wendroff Scheme\n", "$n+1$ 시간에서 Taylor expansion을 활용하면\n", "\n", "$$\n", "u_j^{n+1} = u_j^n + u_t \\Delta t+ \\frac{1}{2!} u_{tt} \\Delta t^2 + O(\\Delta t^3)\n", "$$\n", "\n", "Wave equation 식을 이용해서 $u_t$, $u_{tt}$ 는 다음과 같이 근사할 수 있다.\n", "\n", "$$\n", "u_t = -a u_x \\\\\n", "u_{tt} = a^2 u_{xx}\n", "$$\n", "\n", "이를 적용하면\n", "\n", "$$\n", "u_j^{n+1} = u_j^n - a \\Delta t u_x + \\frac{1}{2} a^2 \\Delta t^2 u_{xx} + O(\\Delta t^3)\n", "$$\n", "\n", "중앙 차분을 적용하면 다음과 같다.\n", "\n", "$$\n", "u_j^{n+1} = u_j^n - \\frac{a \\Delta t}{2 \\Delta x} (u_{j+1}^n - u_{j-1}^n)\n", "+ \\frac{a^2 \\Delta t^2}{2 \\Delta x^2} (u_{j+1}^n -2 u_j^n + u_{j-1}^n)\n", "$$" ] }, { "cell_type": "markdown", "id": "cd2897a9", "metadata": {}, "source": [ "## 실습\n", "- Lax Friedrich, Lax Wendroff 기법의 정확도를 Taylor expansion을 이용해서 분석해보고 Consistency 에 대해 논의하시오.\n", "\n", "\n", "- Lax Friedrich 기법에 대해 von Neumann 안정성 분석을 수행하시오.\n", "\n", "\n", "- $N$ = 50 일 때 Upwind, Central, Lax Friedrich, Lax Wendroff 기법에 대해서 Sine Wave 문제를 해석하시오, $CFL$ 수는 0.5, 0.9, 1.5. 2.0 에 대해서 수행하시오.\n", "\n", "\n", "- (Optional) Lax Wendroff 기법에 대해 von Neumann 안정성을 분석하시오." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.2" } }, "nbformat": 4, "nbformat_minor": 5 }